Abstract
Diabetic foot ulcers are one of the common complications that diabetic patients present. Poorly treated lesions can lead to the amputation of the limbs and even cause death. Therefore, the identification and follow-up of the lesions are of vital importance to apply a timely treatment. In this study, we performed the automatic classification of images of diabetic foot ulcers using computer vision techniques. We evaluated different approaches to traditional computer vision techniques and feature extraction from a convolution neural network. An SVM classifier using features extracted by the CNN Densenet201 obtained the best results. The results achieved here outperformed those reported in the literature for similar problems in terms of the F1score measure. That shows that the proposed alternative of combining a pre-trained CNN model as a feature extraction method and then using automatic classifiers is satisfactory in this task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cho, N.H., et al.: IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diab. Res. Clin. Pract. 138, 271–281 (2018). https://doi.org/10.1016/j.diabres.2018.02.023
Armstrong, D.G., Boulton, A.J.M., Bus, S.A.: Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 376, 2367–2375 (2017). https://doi.org/10.1056/NEJMra1615439
Goyal, M., Reeves, N.D., Rajbhandari, S., Yap, M.H.: Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices. IEEE J. Biomed. Health Inform. 23, 1730–1741 (2019). https://doi.org/10.1109/JBHI.2018.2868656
Yap, M.H., et al.: Deep learning in diabetic foot ulcers detection: a comprehensive evaluation. arXiv:2010.03341 [cs] (2020)
Cassidy, B., et al.: DFUC2020: analysis towards diabetic foot ulcer detection. Eur. Endocrinol. 1, 5 (2021). https://doi.org/10.17925/EE.2021.1.1.5
Goyal, M., Reeves, N.D., Davison, A.K., Rajbhandari, S., Spragg, J., Yap, M.H.: DFUNet: convolutional neural networks for diabetic foot ulcer classification. IEEE Trans. Emerg. Topics Comput. Intell. 4, 728–739 (2020). https://doi.org/10.1109/TETCI.2018.2866254
Goyal, M., Reeves, N.D., Rajbhandari, S., Ahmad, N., Wang, C., Yap, M.H.: Recognition of ischaemia and infection in diabetic foot ulcers: dataset and techniques. Comput. Biol. Med. 117, 103616 (2020). https://doi.org/10.1016/j.compbiomed.2020.103616
Yap, M.H., Cassidy, B., Pappachan, J.M., O’Shea, C., Gillespie, D., Reeves, N.: Analysis towards classification of infection and ischaemia of diabetic foot ulcers. arXiv:2104.03068 [cs] (2021)
Wang, P., Fan, E., Wang, P.: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recogn. Lett. 141, 61–67 (2021). https://doi.org/10.1016/j.patrec.2020.07.042
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision – ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision, pp. 2548–2555 (2011). https://doi.org/10.1109/ICCV.2011.6126542
Harris, C.G., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–152 (1988). https://doi.org/10.5244/C.2.23
Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_16
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision – ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Arora, G., Dubey, A.K., Jaffery, Z.A., Rocha, A.: Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05212-y
Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611 (2006). https://doi.org/10.1109/TPAMI.2006.79
López-Cabrera, J.D., Rodríguez, L.A.L., Pérez-Díaz, M.: Classification of breast cancer from digital mammography using deep learning. Intel. Artif. 23, 56–66 (2020)
Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2, 665–673 (2020). https://doi.org/10.1038/s42256-020-00257-z
Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012)
Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L., Weinberger, K.: Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 1–1 (2019). https://doi.org/10.1109/TPAMI.2019.2918284
López-Cabrera, J.D., Pereira-Toledo, A.: Análisis del comportamiento del algoritmo SVM para diferentes kernel en ambientes controlados. HOLOS 5, 101–115 (2018)
Pereira-Toledo, A., López-Cabrera, J.D., Quintero-Domínguez, L.A.: Estudio experimental para la comparación del desempeño de Naïve Bayes con otros clasificadores bayesianos. Rev. Cuba. Cienc. Inform. 11, 67–84 (2017)
Acknowledgment
We gratefully acknowledge the support of DFU2021 Organizers who provided access to the data base resources.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
López-Cabrera, J.D., Ruiz-Gonzalez, Y., Díaz-Amador, R., Taboada-Crispi, A. (2021). Automatic Classification of Diabetic Foot Ulcers Using Computer Vision Techniques. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-89691-1_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89690-4
Online ISBN: 978-3-030-89691-1
eBook Packages: Computer ScienceComputer Science (R0)