Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Classification of Diabetic Foot Ulcers Using Computer Vision Techniques

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2021)

Abstract

Diabetic foot ulcers are one of the common complications that diabetic patients present. Poorly treated lesions can lead to the amputation of the limbs and even cause death. Therefore, the identification and follow-up of the lesions are of vital importance to apply a timely treatment. In this study, we performed the automatic classification of images of diabetic foot ulcers using computer vision techniques. We evaluated different approaches to traditional computer vision techniques and feature extraction from a convolution neural network. An SVM classifier using features extracted by the CNN Densenet201 obtained the best results. The results achieved here outperformed those reported in the literature for similar problems in terms of the F1score measure. That shows that the proposed alternative of combining a pre-trained CNN model as a feature extraction method and then using automatic classifiers is satisfactory in this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://dfu-challenge.github.io/index.html.

References

  1. Cho, N.H., et al.: IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diab. Res. Clin. Pract. 138, 271–281 (2018). https://doi.org/10.1016/j.diabres.2018.02.023

    Article  Google Scholar 

  2. Armstrong, D.G., Boulton, A.J.M., Bus, S.A.: Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 376, 2367–2375 (2017). https://doi.org/10.1056/NEJMra1615439

    Article  Google Scholar 

  3. Goyal, M., Reeves, N.D., Rajbhandari, S., Yap, M.H.: Robust methods for real-time diabetic foot ulcer detection and localization on mobile devices. IEEE J. Biomed. Health Inform. 23, 1730–1741 (2019). https://doi.org/10.1109/JBHI.2018.2868656

    Article  Google Scholar 

  4. Yap, M.H., et al.: Deep learning in diabetic foot ulcers detection: a comprehensive evaluation. arXiv:2010.03341 [cs] (2020)

  5. Cassidy, B., et al.: DFUC2020: analysis towards diabetic foot ulcer detection. Eur. Endocrinol. 1, 5 (2021). https://doi.org/10.17925/EE.2021.1.1.5

    Article  Google Scholar 

  6. Goyal, M., Reeves, N.D., Davison, A.K., Rajbhandari, S., Spragg, J., Yap, M.H.: DFUNet: convolutional neural networks for diabetic foot ulcer classification. IEEE Trans. Emerg. Topics Comput. Intell. 4, 728–739 (2020). https://doi.org/10.1109/TETCI.2018.2866254

    Article  Google Scholar 

  7. Goyal, M., Reeves, N.D., Rajbhandari, S., Ahmad, N., Wang, C., Yap, M.H.: Recognition of ischaemia and infection in diabetic foot ulcers: dataset and techniques. Comput. Biol. Med. 117, 103616 (2020). https://doi.org/10.1016/j.compbiomed.2020.103616

    Article  Google Scholar 

  8. Yap, M.H., Cassidy, B., Pappachan, J.M., O’Shea, C., Gillespie, D., Reeves, N.: Analysis towards classification of infection and ischaemia of diabetic foot ulcers. arXiv:2104.03068 [cs] (2021)

  9. Wang, P., Fan, E., Wang, P.: Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recogn. Lett. 141, 61–67 (2021). https://doi.org/10.1016/j.patrec.2020.07.042

    Article  Google Scholar 

  10. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision – ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  11. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision, pp. 2548–2555 (2011). https://doi.org/10.1109/ICCV.2011.6126542

  12. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–152 (1988). https://doi.org/10.5244/C.2.23

  13. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_16

    Chapter  Google Scholar 

  14. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision – ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  15. Arora, G., Dubey, A.K., Jaffery, Z.A., Rocha, A.: Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05212-y

  16. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611 (2006). https://doi.org/10.1109/TPAMI.2006.79

    Article  Google Scholar 

  17. López-Cabrera, J.D., Rodríguez, L.A.L., Pérez-Díaz, M.: Classification of breast cancer from digital mammography using deep learning. Intel. Artif. 23, 56–66 (2020)

    Article  Google Scholar 

  18. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2, 665–673 (2020). https://doi.org/10.1038/s42256-020-00257-z

    Article  Google Scholar 

  19. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012)

    Google Scholar 

  20. Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L., Weinberger, K.: Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 1–1 (2019). https://doi.org/10.1109/TPAMI.2019.2918284

  21. López-Cabrera, J.D., Pereira-Toledo, A.: Análisis del comportamiento del algoritmo SVM para diferentes kernel en ambientes controlados. HOLOS 5, 101–115 (2018)

    Article  Google Scholar 

  22. Pereira-Toledo, A., López-Cabrera, J.D., Quintero-Domínguez, L.A.: Estudio experimental para la comparación del desempeño de Naïve Bayes con otros clasificadores bayesianos. Rev. Cuba. Cienc. Inform. 11, 67–84 (2017)

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the support of DFU2021 Organizers who provided access to the data base resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Daniel López-Cabrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Cabrera, J.D., Ruiz-Gonzalez, Y., Díaz-Amador, R., Taboada-Crispi, A. (2021). Automatic Classification of Diabetic Foot Ulcers Using Computer Vision Techniques. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89691-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89690-4

  • Online ISBN: 978-3-030-89691-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics