Abstract
In recent years Fuzzy Cognitive Maps had become an important tool for expert knowledge representation due to the flexibility and interpretability of modeled maps. Its construction frequently requires an expert’s intervention but, there are situations when only the data is available or is required to extract the contained implicit knowledge for analysis or decision making proposes. Several studies have been developed to improve or find causal relation values between the map concepts but usually require a previous concept definition step carried out by experts. The frequent pattern mining techniques show a way for non-trivial relations extraction from datasets, and those relations may represent a causality degree. In this paper, a strategy to extract concepts from continuous and discrete features for supervised classification problems is proposed. Additionally, to estimate the causality degree between defined map concepts is proposed to use association rule mining techniques. Finally, the strategy is evaluated to show the interpretability and accuracy of generated Fuzzy Cognitive Maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C., Bhuiyan, M.A., Al Hasan, M.: Frequent pattern mining algorithms: a survey. In: Aggarwal, C., Han, J. (eds.) Frequent Pattern Mining, pp. 19–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07821-2_2
Amirkhani, A., Mosavi, M.R., Mohammadi, K., Papageorgiou, E.I.: A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Comput. Appl. 30(5), 1573–1588 (2018)
Amirkhani, A., Papageorgiou, E.I., Mohseni, A., Mosavi, M.R.: A review of fuzzy cognitive maps in medicine: taxonomy, methods, and applications. Comput. Methods Programs Biomed. 142, 129–145 (2017)
Bezdek, J.C.: Fuzzy-Mathematics in Pattern Classification. Cornell University, Ithaca (1973)
Casillas, J., Cordón, O., Triguero, F.H., Magdalena, L.: Interpretability Issues in Fuzzy Modeling, vol. 128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-540-37057-4
Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Routledge, Abingdon (2013)
Felix, G., Nápoles, G., Falcon, R., Froelich, W., Vanhoof, K., Bello, R.: A review on methods and software for fuzzy cognitive maps. Artif. Intell. Rev. 52(3), 1707–1737 (2019)
Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)
He, H., Tan, Y., Fujimoto, K.: Estimation of optimal cluster number for fuzzy clustering with combined fuzzy entropy index. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 697–703. IEEE (2016)
Kim, J., Han, M., Lee, Y., Park, Y.: Futuristic data-driven scenario building: incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Syst. Appl. 57, 311–323 (2016)
Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24(1), 65–75 (1986)
Kottas, F., Boutalis, Y.S., Devedzic, G., Mertzios, B.G.: A new method for reaching equilibrium points in fuzzy cognitive maps. In: 2004 2nd International IEEE Conference on ‘Intelligent Systems’. Proceedings (IEEE Cat. No. 04EX791), vol. 1, pp. 53–60. IEEE (2004)
Li, J., Liu, L., Le, T.D.: Practical Approaches to Causal Relationship Exploration. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14433-7
Nápoles, G., Leon Espinosa, M., Grau, I., Vanhoof, K., Bello, R.: Fuzzy cognitive maps based models for pattern classification: advances and challenges. In: Pelta, D., Cruz Corona, C. (eds.) Soft Computing Based Optimization and Decision Models, vol. 360, pp. 83–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64286-4_5
Nápoles, G., Jastrzebska, A., Mosquera, C., Vanhoof, K., Homenda, W.: Deterministic learning of hybrid fuzzy cognitive maps and network reduction approaches. Neural Netw. 124, 258–268 (2020)
Oostwal, E., Straat, M., Biehl, M.: Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation. Phys. A: Stat. Mech. Appl. 564, 125517 (2021)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)
Stylios, C.D., Bourgani, E., Georgopoulos, V.C.: Impact and applications of fuzzy cognitive map methodologies. In: Kosheleva, O., Shary, S., Xiang, G., Zapatrin, R. (eds.) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. SCI, vol. 835, pp. 229–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31041-7_13
Yuan, K., Liu, J., Yang, S., Wu, K., Shen, F.: Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps. Knowl.-Based Syst. 206, 106359 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Lefebre-Lobaina, J.A., García, M.M. (2021). Data Drive Fuzzy Cognitive Map for Classification Problems. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-89691-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89690-4
Online ISBN: 978-3-030-89691-1
eBook Packages: Computer ScienceComputer Science (R0)