Abstract
The effectiveness of the treatments applied to patients with COVID-19 in serious and critical condition admitted to intensive care units is a necessary element to draw up the strategies and protocols to follow in each particular case. An automatic index that allows to quantify the degree of affectation produced by the disease in the lungs from X-ray images of the thorax has not been investigated so far.
The work presents a method for estimation of a lung affectation index in chest X-ray images in patients diagnosed with COVID-19 in an advanced stage of the disease. The index is obtained from a method that combines image quality evaluation, digital image processing and deep learning for lung region segmentation. This method is capable of facing the problem of very diffuse borders due to the notable effects that COVID-19 patients in serious or critical condition have. The subsequent step of our proposal consist in the classification of the previously segmented image into two classes (healthy region, affected region) establishing the relationship between the number of pixels of each class. The results achieved in the experiments on images of healthy and affected by COVID-19 patients showed high values of sensitivity and specificity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ng, M.-Y., Lee, Y.P., et al.: Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol. Cardiothogracic Imaging 2(1) (2020)
Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395(10223), 497–506 (2020)
Borghesi, A., et al.: Radiographic severity index in COVID-19 pneumonia: relationship to age and sex in 783 Italian patients. Radiol. Med. (Torino) 125(5), 461–464 (2020). https://doi.org/10.1007/s11547-020-01202-1
Monaco, C.G., et al.: Chest x-ray severity score in COVID-19 patients on emergency department admission: a two-centre study. Eur. Radiol. Exp. 4(1), 1–7 (2020). https://doi.org/10.1186/s41747-020-00195-w
Schalekamp, S., Huisman, M., van Dijk R.A., et al.: Model-based prediction of critical illness in hospitalized patients with COVID-19 [published online ahead of print, 2020 Aug 13]. Radiology 202723 (2020)
Sprawls, P.: image characteristics and quality. In: Physical Principles of Medical Imaging Online, Resources for Learning and Teaching. http://www.sprawls.org/resources
Samajdar, T., Quraishi, M.I.: Analysis and evaluation of image quality metrics. In: Mandal, J.K., Satapathy, S.C., Sanyal, M.K., Sarkar, P.P., Mukhopadhyay, A. (eds.) Information Systems Design and Intelligent Applications. AISC, vol. 340, pp. 369–378. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2247-7_38
Chen, F., Pan, J., Han, Y.: An effective image quality evaluation method of x-ray imaging system. J. Comput. Inf. Syst. 7(4), 1278–1285 (2011)
Garea-Llano, E., García-Vázquez, M., Colores-Vargas, J.M., Zamudio-Fuentes, L.M., Ramírez-Acosta, A.A.: Optimized robust multi-sensor scheme for simultaneous video and image iris recognition. Pattern Recogn. Lett. 101, 44–45 (2018)
Gonzalez, R.C., Woods, R.E.: Image compression and watermarking. In: Digital Image Processing, 4th edn, vol. 8 (2018)
Toriwaki, J.-I., Suenaga, Y., Negoro, T., Fukumura, T.: Pattern recognition of chest x-ray images. Comput. Vis. Graph 2(3), 252–271 (1973)
Zhu, Y., Prummer, S., Wang, P., Chen, T., Comaniciu, D., Ostermeier, M.: Dynamic layer separation for coronary DSA and enhancement in fluoroscopic sequences. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 877–884. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_106
Gómez, O., Mesejo, P., Ibáñez, O., Valsecchi, A., Cordón, O.: Deep architectures for high-resolution multi-organ chest x-ray image segmentation. Neural Comput. Appl. 32(20), 15949–15963 (2019). https://doi.org/10.1007/s00521-019-04532-y
Kanne, J.P., Little, B.P., Chung, J.H., Elicker, B.M., Ketai, L.H.: Essentials for radiologists on COVID-19: an update-radiology scientific expert panel. Radiology 296(2), E113–E114 (2020)
López-Cabrera, J.D., Portal Díaz, J.A., Orozco Morales, R., Pérez Díaz, M.: Revisión crítica sobre la identificación de COVID-19 a partir de imágenes de rayos x de tórax usando técnicas de inteligencia artificial. Rev. Cub. Transf. Digit. 1(3), 67–99 (2020)
Laghi, A.: Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence. The Lancet Digit. Health 2(5), e225 (2020)
Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc., San Diego (1994)
Koonsanit, K., Thongvigitmanee, S., Pongnapang, N., Thajchayapong, P.: Image enhancement on digital x-ray images using N-CLAHE. In: 2017 10th (BMEiCON), Hokkaido, Japan, pp. 1–4 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Candemir, S., Jaeger, S., Musco, J., Xue, Z., et al.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med, Imaging 33(2), 577 (2014)
Jaeger, S., et al.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2014). https://doi.org/10.1109/TMI.2013.2284099. PMID: 24108713
Gordienko, Y., et al.: Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2018. AISC, vol. 754, pp. 638–647. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_63
Gelbowitz, A.: Decision trees and random forests guide: an overview of decision trees and random forests: machine learning design patterns. Independently Published (2021)
Acknowledgment
We appreciate the collaboration of the Cuban Society of Imaging and the Hospitals “Luis Díaz Soto” (Naval), Institute of Tropical Medicine “Pedro Kouri” and “Salvador Allende” for providing us with the images that allowed us to develop this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Garea-Llano, E., Castellanos-Loaces, H.A., Martinez-Montes, E., Gonzalez-Dalmau, E. (2021). A Machine Learning Based Approach for Estimation of the Lung Affectation Degree in CXR Images of COVID-19 Patients. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-89691-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89690-4
Online ISBN: 978-3-030-89691-1
eBook Packages: Computer ScienceComputer Science (R0)