Abstract
COVID-19 has been affected worldwide since the end of 2019. Clinical studies have shown that a factor that increases its lethality is the existence of secondary infections. Coinfections associated with the infection SARS-CoV-2 are classified into bacterial infections and fungal infections. A patient may develop one, both, or neither. From a machine learning point of view, this is considered a multi-label classification problem. In this work, we propose a multi-label neural network able to detect such infections in a patient with SARS-CoV-2 and thus provide the medical community with a diagnosis to guide therapy in these patients. However, neural networks are often considered a “black box” model, as their strength in modeling complex interactions, also make their operation almost impossible to explain. Therefore, we propose three adaptations of the Layer-wise Relevance Propagation algorithm to explain multi-label neural networks. The inclusion of this post-hoc interpretability stage made it possible to identify significant input variables in a classifier output.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilera Calzadilla, Y., Díaz Morales, Y., Ortiz Díaz, L.A., Gonzalez Martínez, O.L., Lovelle Enríquez, O.A., Sánchez Álvarez, M.d.L.: Infecciones bacterianas asociadas a la covid-19 en pacientes de una unidad de cuidados intensivos. Revista Cubana de Medicina Militar 49(3) (2020)
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS ONE 10(7), e0130140 (2015)
Bello, R., et al.: Una mirada a la inteligencia artificial frente a la covid-19 en cuba. Revista Cubana de Transformación Digital 1(3), 27–36 (2020)
Car, Z., Baressi Šegota, S., Anđelić, N., Lorencin, I., Mrzljak, V.: Modeling the spread of COVID-19 infection using a multilayer perceptron. Comput. Math. Methods Med. 2020 (2020)
Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730 (2015)
Fong, S.J., Li, G., Dey, N., Crespo, R.G., Herrera-Viedma, E.: Finding an accurate early forecasting model from small dataset: a case of 2019-NCOV novel coronavirus outbreak. arXiv preprint arXiv:2003.10776 (2020)
Herrera, F., Charte, F., Rivera, A.J., Del Jesus, M.J.: Multilabel classification. In: Herrera, F., Charte, F., Rivera, A.J., Del Jesus, M.J. (eds.) Multilabel Classification, pp. 17–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41111-8_2
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: 31st International Conference on Neural Information Processing Systems. NIPS 2017, pp. 972–981. Curran Associates Inc. (2017)
Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Sig. Process. 73, 1–15 (2018)
Nápoles, G., Bello, M., Salgueiro, Y.: Long-term cognitive network-based architecture for multi-label classification. Neural Netw. (2021)
Ramón-Hernández, A., Bello Garcia, B., Bello, M., García Lorenzo, M., Bello Pérez, R.: Análisis de escenario utilizando técnicas de inteligencia artificial. Anales de la Academia de Ciencias de Cuba 10(2) (2020)
Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 (2017)
Sipior, J.C.: Considerations for development and use of AI in response to COVID-19. Int. J. Inf. Manag. 55, 102170 (2020)
Suárez, A.R., Lorenzo, M.M.G., Caballero, Y., Bello, R.: Un bosquejo de la inteligencia artificial frente a la covid-19 en el mundo. Revista Cubana de Transformación Digit. 1(3), 05–26 (2020)
Wong, T.T.: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn. 48(9), 2839–2846 (2015)
Yan, T., Wong, P.K., Ren, H., Wang, H., Wang, J., Li, Y.: Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans. Chaos, Solitons Fractals 140, 110153 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bello, M., Aguilera, Y., Nápoles, G., García, M.M., Bello, R., Vanhoof, K. (2021). Layer-Wise Relevance Propagation in Multi-label Neural Networks to Identify COVID-19 Associated Coinfections. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-89691-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89690-4
Online ISBN: 978-3-030-89691-1
eBook Packages: Computer ScienceComputer Science (R0)