Nothing Special   »   [go: up one dir, main page]

Skip to main content

Layer-Wise Relevance Propagation in Multi-label Neural Networks to Identify COVID-19 Associated Coinfections

  • Conference paper
  • First Online:
Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2021)

Abstract

COVID-19 has been affected worldwide since the end of 2019. Clinical studies have shown that a factor that increases its lethality is the existence of secondary infections. Coinfections associated with the infection SARS-CoV-2 are classified into bacterial infections and fungal infections. A patient may develop one, both, or neither. From a machine learning point of view, this is considered a multi-label classification problem. In this work, we propose a multi-label neural network able to detect such infections in a patient with SARS-CoV-2 and thus provide the medical community with a diagnosis to guide therapy in these patients. However, neural networks are often considered a “black box” model, as their strength in modeling complex interactions, also make their operation almost impossible to explain. Therefore, we propose three adaptations of the Layer-wise Relevance Propagation algorithm to explain multi-label neural networks. The inclusion of this post-hoc interpretability stage made it possible to identify significant input variables in a classifier output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilera Calzadilla, Y., Díaz Morales, Y., Ortiz Díaz, L.A., Gonzalez Martínez, O.L., Lovelle Enríquez, O.A., Sánchez Álvarez, M.d.L.: Infecciones bacterianas asociadas a la covid-19 en pacientes de una unidad de cuidados intensivos. Revista Cubana de Medicina Militar 49(3) (2020)

    Google Scholar 

  2. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS ONE 10(7), e0130140 (2015)

    Google Scholar 

  4. Bello, R., et al.: Una mirada a la inteligencia artificial frente a la covid-19 en cuba. Revista Cubana de Transformación Digital 1(3), 27–36 (2020)

    Google Scholar 

  5. Car, Z., Baressi Šegota, S., Anđelić, N., Lorencin, I., Mrzljak, V.: Modeling the spread of COVID-19 infection using a multilayer perceptron. Comput. Math. Methods Med. 2020 (2020)

    Google Scholar 

  6. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730 (2015)

    Google Scholar 

  7. Fong, S.J., Li, G., Dey, N., Crespo, R.G., Herrera-Viedma, E.: Finding an accurate early forecasting model from small dataset: a case of 2019-NCOV novel coronavirus outbreak. arXiv preprint arXiv:2003.10776 (2020)

  8. Herrera, F., Charte, F., Rivera, A.J., Del Jesus, M.J.: Multilabel classification. In: Herrera, F., Charte, F., Rivera, A.J., Del Jesus, M.J. (eds.) Multilabel Classification, pp. 17–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41111-8_2

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  10. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: 31st International Conference on Neural Information Processing Systems. NIPS 2017, pp. 972–981. Curran Associates Inc. (2017)

    Google Scholar 

  11. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Sig. Process. 73, 1–15 (2018)

    Google Scholar 

  12. Nápoles, G., Bello, M., Salgueiro, Y.: Long-term cognitive network-based architecture for multi-label classification. Neural Netw. (2021)

    Google Scholar 

  13. Ramón-Hernández, A., Bello Garcia, B., Bello, M., García Lorenzo, M., Bello Pérez, R.: Análisis de escenario utilizando técnicas de inteligencia artificial. Anales de la Academia de Ciencias de Cuba 10(2) (2020)

    Google Scholar 

  14. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296 (2017)

  15. Sipior, J.C.: Considerations for development and use of AI in response to COVID-19. Int. J. Inf. Manag. 55, 102170 (2020)

    Google Scholar 

  16. Suárez, A.R., Lorenzo, M.M.G., Caballero, Y., Bello, R.: Un bosquejo de la inteligencia artificial frente a la covid-19 en el mundo. Revista Cubana de Transformación Digit. 1(3), 05–26 (2020)

    Google Scholar 

  17. Wong, T.T.: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn. 48(9), 2839–2846 (2015)

    Google Scholar 

  18. Yan, T., Wong, P.K., Ren, H., Wang, H., Wang, J., Li, Y.: Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans. Chaos, Solitons Fractals 140, 110153 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bello, M., Aguilera, Y., Nápoles, G., García, M.M., Bello, R., Vanhoof, K. (2021). Layer-Wise Relevance Propagation in Multi-label Neural Networks to Identify COVID-19 Associated Coinfections. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89691-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89690-4

  • Online ISBN: 978-3-030-89691-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics