Abstract
Among the common image structures, line feature is the extensively used geometric structure for various image processing applications, including the analysis of biomedical image with blood vessels highlighting, graph-shape structures, cracks detection, satellite images or remote sensing data. Multi-scale processing of line feature is essentially required for the extraction of more relevant information or line structures of heterogeneous widths. In this paper, a multi-scale filtering-based line detection approach using second-order semi-Gaussian anisotropic kernel is proposed. Meanwhile, a strategy is introduced to calculate the strength of the observed line feature across the different scales. The proposed technique is evaluated on real images by using their tied hand-labeled images. Finally, the experimental results and comparison of images containing different line feature widths with state-of-the-art techniques have sufficiently supported the effectiveness of our technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bae, Y., Lee, W.H., Choi, Y., Jeon, Y., Ra, J.: Automatic road extraction from remote sensing images based on a normalized second derivative map. IEEE GRSL 12(9), 1858–1862 (2015)
Canny, J.: A computational approach to edge detection. IEEE TPAMI 6, 679–698 (1986)
Freeman, W., Adelson, E.H.: The design and use of steerable filters. IEEE TPAMI 13(9), 891–906 (1991)
Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE TPAMI 26(8), 1007–1019 (2004). Aug
Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–156 (1998)
Lopez-Molina, C., De Ulzurrun, G., Baetens, J., Van den Bulcke, J., De Baets, B.: Unsupervised ridge detection using second order anisotropic gaussian kernels. Sig. Process. 116, 55–67 (2015)
Magnier, B.: Edge detection evaluation: a new normalized figure of merit. In: IEEE ICASSP, pp. 2407–2411 (2019)
Magnier, B., Abdulrahman, H., Montesinos, P.: A review of supervised edge detection evaluation methods and an objective comparison of filtering gradient computations using hysteresis thresholds. J. Imaging 4(6), 74 (2018)
Magnier, B., Aberkane, A., Borianne, P., Montesinos, P., Jourdan, C.: Multi-scale crest line extraction based on half gaussian kernels. In: IEEE ICASSP, pp. 5105–5109 (2014)
Montesinos, P., Magnier, B.: A new perceptual edge detector in color images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 209–220. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17688-3_21
Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 3–18. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55426-2_1
Sanchez, C.F., Ivan, C.A., Arturo, H.A., Martha Alicia, H.G., Sergio Eduardo, S.M.: Automatic segmentation of coronary arteries in x-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 9(24), 5507 (2019)
Shokouh, G.S., Magnier, B., Xu, B., Montesinos, P.: Ridge detection by image filtering techniques: a review and an objective analysis. Pattern Recogn. Image Anal. 31(2), 551–570 (2021). https://doi.org/10.1134/S1054661821030226
Steger, C.: An unbiased detector of curvilinear structures. IEEE TPAMI 20(2), 113–125 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Magnier, B., Shokouh, GS., Xu, B., Montesinos, P. (2021). A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian Filters. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-89131-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89130-5
Online ISBN: 978-3-030-89131-2
eBook Packages: Computer ScienceComputer Science (R0)