Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian Filters

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13053))

Included in the following conference series:

Abstract

Among the common image structures, line feature is the extensively used geometric structure for various image processing applications, including the analysis of biomedical image with blood vessels highlighting, graph-shape structures, cracks detection, satellite images or remote sensing data. Multi-scale processing of line feature is essentially required for the extraction of more relevant information or line structures of heterogeneous widths. In this paper, a multi-scale filtering-based line detection approach using second-order semi-Gaussian anisotropic kernel is proposed. Meanwhile, a strategy is introduced to calculate the strength of the observed line feature across the different scales. The proposed technique is evaluated on real images by using their tied hand-labeled images. Finally, the experimental results and comparison of images containing different line feature widths with state-of-the-art techniques have sufficiently supported the effectiveness of our technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, Y., Lee, W.H., Choi, Y., Jeon, Y., Ra, J.: Automatic road extraction from remote sensing images based on a normalized second derivative map. IEEE GRSL 12(9), 1858–1862 (2015)

    Google Scholar 

  2. Canny, J.: A computational approach to edge detection. IEEE TPAMI 6, 679–698 (1986)

    Article  Google Scholar 

  3. Freeman, W., Adelson, E.H.: The design and use of steerable filters. IEEE TPAMI 13(9), 891–906 (1991)

    Article  Google Scholar 

  4. Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE TPAMI 26(8), 1007–1019 (2004). Aug

    Article  Google Scholar 

  5. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–156 (1998)

    Article  Google Scholar 

  6. Lopez-Molina, C., De Ulzurrun, G., Baetens, J., Van den Bulcke, J., De Baets, B.: Unsupervised ridge detection using second order anisotropic gaussian kernels. Sig. Process. 116, 55–67 (2015)

    Article  Google Scholar 

  7. Magnier, B.: Edge detection evaluation: a new normalized figure of merit. In: IEEE ICASSP, pp. 2407–2411 (2019)

    Google Scholar 

  8. Magnier, B., Abdulrahman, H., Montesinos, P.: A review of supervised edge detection evaluation methods and an objective comparison of filtering gradient computations using hysteresis thresholds. J. Imaging 4(6), 74 (2018)

    Article  Google Scholar 

  9. Magnier, B., Aberkane, A., Borianne, P., Montesinos, P., Jourdan, C.: Multi-scale crest line extraction based on half gaussian kernels. In: IEEE ICASSP, pp. 5105–5109 (2014)

    Google Scholar 

  10. Montesinos, P., Magnier, B.: A new perceptual edge detector in color images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 209–220. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17688-3_21

    Chapter  Google Scholar 

  11. Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 3–18. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55426-2_1

    Chapter  Google Scholar 

  12. Sanchez, C.F., Ivan, C.A., Arturo, H.A., Martha Alicia, H.G., Sergio Eduardo, S.M.: Automatic segmentation of coronary arteries in x-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 9(24), 5507 (2019)

    Article  Google Scholar 

  13. Shokouh, G.S., Magnier, B., Xu, B., Montesinos, P.: Ridge detection by image filtering techniques: a review and an objective analysis. Pattern Recogn. Image Anal. 31(2), 551–570 (2021). https://doi.org/10.1134/S1054661821030226

    Article  Google Scholar 

  14. Steger, C.: An unbiased detector of curvilinear structures. IEEE TPAMI 20(2), 113–125 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Magnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magnier, B., Shokouh, GS., Xu, B., Montesinos, P. (2021). A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian Filters. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89131-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89130-5

  • Online ISBN: 978-3-030-89131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics