Abstract
The automatic detection of anomalies captured by surveillance settings is essential for speeding the otherwise laborious approach. To date, UCF-Crime is the largest available dataset for automatic visual analysis of anomalies and consists of real-world crime scenes of various categories. In this paper, we introduce HR-Crime, a subset of the UCF-Crime dataset suitable for human-related anomaly detection tasks. We rely on state-of-the-art techniques to build the feature extraction pipeline for human-related anomaly detection. Furthermore, we present the baseline anomaly detection analysis on the HR-Crime. HR-Crime as well as the developed feature extraction pipeline and the extracted features will be publicly available for further research in the field.
M. Aghaei and E. Talavera—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Dataset is publicly available at https://doi.org/10.34894/IRRDJE.
References
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. PAMI (2019)
Emonet, R., Varadarajan, J., Odobez, J.M.: Multi-camera open space human activity discovery for anomaly detection. In: IEEE International Conference on AVSS (2011)
Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: IEEE International Conference on Computer Vision (2017)
Gong, M., Zeng, H., Xie, Y., Li, H., Tang, Z.: Local distinguishability aggrandizing network for human anomaly detection. Neural Netw. 122, 364–373 (2020)
Huang, Z., Wang, J., Fu, X., Yu, T., Guo, Y., Wang, R.: DC-SPP-YOLO: dense connection and spatial pyramid pooling based yolo for object detection. Inf. Sci. (2020)
Insafutdinov, E., et al.: ArtTrack: articulated multi-person tracking in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3
Iqbal, U., Milan, A., Gall, J.: PoseTrack: joint multi-person pose estimation and tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Kocabas, M., Karagoz, S., Akbas, E.: MultiPoseNet: fast multi-person pose estimation using pose residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 437–453. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_26
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q., 83–97 (1955)
Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., Venkatesh, S.: Learning regularity in skeleton trajectories for anomaly detection in videos. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–420. IEEE (2009)
Ramachandra, B., Jones, M.: Street scene: a new dataset and evaluation protocol for video anomaly detection. In: IEEE Winter Conference on Applications of Computer Vision (2020)
Ramachandra, B., Jones, M., Vatsavai, R.R.: A survey of single-scene video anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Xiu, Y., Li, J., Wang, H., Fang, Y., Lu, C.: Pose flow: efficient online pose tracking. arXiv preprint arXiv:1802.00977 (2018)
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Boekhoudt, K., Matei, A., Aghaei, M., Talavera, E. (2021). HR-Crime: Human-Related Anomaly Detection in Surveillance Videos. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-89131-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89130-5
Online ISBN: 978-3-030-89131-2
eBook Packages: Computer ScienceComputer Science (R0)