Nothing Special   »   [go: up one dir, main page]

Skip to main content

HR-Crime: Human-Related Anomaly Detection in Surveillance Videos

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13053))

Included in the following conference series:

Abstract

The automatic detection of anomalies captured by surveillance settings is essential for speeding the otherwise laborious approach. To date, UCF-Crime is the largest available dataset for automatic visual analysis of anomalies and consists of real-world crime scenes of various categories. In this paper, we introduce HR-Crime, a subset of the UCF-Crime dataset suitable for human-related anomaly detection tasks. We rely on state-of-the-art techniques to build the feature extraction pipeline for human-related anomaly detection. Furthermore, we present the baseline anomaly detection analysis on the HR-Crime. HR-Crime as well as the developed feature extraction pipeline and the extracted features will be publicly available for further research in the field.

M. Aghaei and E. Talavera—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Dataset is publicly available at https://doi.org/10.34894/IRRDJE.

References

  1. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. PAMI (2019)

    Google Scholar 

  2. Emonet, R., Varadarajan, J., Odobez, J.M.: Multi-camera open space human activity discovery for anomaly detection. In: IEEE International Conference on AVSS (2011)

    Google Scholar 

  3. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  4. Gong, M., Zeng, H., Xie, Y., Li, H., Tang, Z.: Local distinguishability aggrandizing network for human anomaly detection. Neural Netw. 122, 364–373 (2020)

    Article  Google Scholar 

  5. Huang, Z., Wang, J., Fu, X., Yu, T., Guo, Y., Wang, R.: DC-SPP-YOLO: dense connection and spatial pyramid pooling based yolo for object detection. Inf. Sci. (2020)

    Google Scholar 

  6. Insafutdinov, E., et al.: ArtTrack: articulated multi-person tracking in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  7. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  8. Iqbal, U., Milan, A., Gall, J.: PoseTrack: joint multi-person pose estimation and tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  9. Kocabas, M., Karagoz, S., Akbas, E.: MultiPoseNet: fast multi-person pose estimation using pose residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 437–453. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_26

    Chapter  Google Scholar 

  10. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q., 83–97 (1955)

    Google Scholar 

  11. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  12. Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., Venkatesh, S.: Learning regularity in skeleton trajectories for anomaly detection in videos. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  13. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–420. IEEE (2009)

    Google Scholar 

  14. Ramachandra, B., Jones, M.: Street scene: a new dataset and evaluation protocol for video anomaly detection. In: IEEE Winter Conference on Applications of Computer Vision (2020)

    Google Scholar 

  15. Ramachandra, B., Jones, M., Vatsavai, R.R.: A survey of single-scene video anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  16. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  17. Xiu, Y., Li, J., Wang, H., Fang, Y., Lu, C.: Pose flow: efficient online pose tracking. arXiv preprint arXiv:1802.00977 (2018)

  18. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayleigh Boekhoudt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boekhoudt, K., Matei, A., Aghaei, M., Talavera, E. (2021). HR-Crime: Human-Related Anomaly Detection in Surveillance Videos. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89131-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89130-5

  • Online ISBN: 978-3-030-89131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics