Abstract
Bolt tightening is one of the typical robot screwing operations. In industry, various types of bolts, high repeatability, and frequent task switching have brought challenges for robots to screw bolts. This paper is based on the human-machine skill transfer method to realize the robot bolt screwing. First, the teaching data was aligned with the trajectory through Dynamic Time Warping (DTW), and then the Gaussian Mixture Model, Gaussian Mixture Regression (GMM-GMR) was used for feature extraction and trajectory information. The screwing trajectory was learned and fitted. Finally, method verification was carried out on the built platform. The results show that the robot based on GMM-GMR has acquired the skills of screwing operation.
Supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U2013204), Shandong Major Science and Technology Innovation Project (Grand No. 2019JZZY010429), Shandong Provincial Key Research and Development Program (Grand No. 2019TSLH0302).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dharmara, K., Monfared, R.P., Ogun, P.S., Jackson, M.R.: Robotic assembly of threaded fasteners in a non-structured environment. Int. J. Adv. Manuf. Technol. 98, 2093–2107 (2018). https://doi.org/10.1007/s00170-018-2363-5
Zhang, Q., et al.: A novel approach for flexible manipulator conducting screwing task based on robot-environment contact classification. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235(8), 1357–1367 (2019)
Deters, C., et al.: Accurate bolt tightening using model-free fuzzy control for wind turbine hub bearing assembly. IEEE Trans. Control Syst. Technol. 23(1), 1–12 (2014)
Pitipong, S., Pornjit, P., Watcharin, P.: An automated four-DOF robot screw fastening using visual servo. In: 2010 IEEE/SICE International Symposium on System Integration (2010). https://doi.org/10.1109/SII.2010.5708355
Shauri, R.L.A., et al.: Sensor integration and fusion for autonomous screwing task by dual-manipulator hand robot. Procedia Eng. 41, 1412–1420 (2012)
Ravichandar, H., Polydoros, A.S., Chernova, S., Billard, A.: Recent advances in robot learning from demonstration. Annu. Rev. Control Robot. Auton. Syst. 3, 297–330 (2020)
Zeng, C., Yang, C.-G., Li, Q., Dai, S.-L.: Research progress on human-robot skill transfer. Acta Automatica Sinica 45(10), 1813–1828 (2019). https://doi.org/10.16383/j.aas.c180397
Liu, N.-J., Lu, T., Cai, Y.-H., Wang, S.: A review of robot manipulation skills learning methods. Acta Automatica Sinica 45(3), 458–470 (2019). https://doi.org/10.16383/j.aas.c180076
Calinon, S., Guenter, F., Billard, A.: On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(2), 286–298 (2007)
Calinon, S., Billard, A.: Statistical learning by imitation of competing constraints in joint space and task space. Adv. Robot. 23(15), 2059–2076 (2009)
Muhlig, M., Gienger, M., Hellbach, S., Steil, J.J., Goerick, C.: Task-level imitation learning using variance-based movement optimization. In: 2009 IEEE International Conference on Robotics and Automation, pp. 1177–1184 (2009)
Ti, B., Gao, Y., Li, Q., et al.: Dynamic movement primitives for movement generation using GMM-GMR analytical method. In: 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT), pp. 250–254 (2019)
Ti, B., Gao, Y., Li, Q., Zhao, J.: Human intention understanding from multiple demonstrations and behavior generalization in dynamic movement primitives framework. IEEE Access 7, 36186–36194 (2019)
Wang, Y.Q., Hu, Y.D., El Zaatari, S., Li, W.D., Zhou, Y.: Optimised learning from demonstrations for collaborative robots. Robot. Comput. Integr. Manuf. 71, 102169 (2021)
Jin, C.-C., Liu, A.-D., Steven, L., Zhang, W.-A.: A robot skill learning method based on improved stable estimator of dynamical systems. Acta Automatica Sinica 46(x), 1–11 (2020). https://doi.org/10.16383/j.aas.c200341
Müller, M.: Dynamic time warping. Information retrieval for music and motion, pp. 69–84 (2007)
Stulp, F., Sigaud, O.: Many regression algorithms, one unified model: a review. Neural Netw. 69, 60–79 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Man, Z., Fengming, L., Wei, Q., Yibin, L., Rui, S. (2021). Robot Bolt Skill Learning Based on GMM-GMR. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-89098-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89097-1
Online ISBN: 978-3-030-89098-8
eBook Packages: Computer ScienceComputer Science (R0)