Abstract
Based on the idea of regulating the variation on stiffness by controlling the number of springs involved in the work, this paper designs a kind of variable stiffness actuator (VSA) which can be applied to the field of robot. The variable stiffness structure takes the spiral tensile spring as the elastic element, and the number of springs Participating in the work is controlled by the push-pull electromagnet. It has the accurate positive and negative 32 kinds of stiffness adjustment values. The structure model was established by using SolidWorks. MATLAB analysis was used to optimize the design of the structure and conduct mechanical and structural stiffness analysis, and the angle range and stiffness range of the actuator were obtained, which had showed a uniform characteristic of distribution of adjustable stiffness values in stiffness range interval. The conclusion is that the VSA has the advantages of real-time and accurate change of stiffness, wide variation range of stiffness and wide adjustment range of angle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zacharaki, A., Kostavelis, I., Gasteratos, A., Dokas, I.M.: Safety bounds in human robot interaction: a survey. Saf. Sci. 127, 104667 (2020)
Ham, R.V., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)
Vanderborght, B., Albuschaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)
Yu, N., Zou, W., Sun, Y.: Passivity guaranteed stiffness control with multiple frequency band specifications for a cable-driven series elastic actuator. Mech. Syst. Signal Process. 117, 709–722 (2019)
Sun, L., Li, M., Wang, M., Yin, W., Sun, N., Liu, J.: Continuous finite-time output torque control approach for series elastic actuator. Mech. Syst. Signal Process. 139, 105853 (2020)
Chen, B., Zi, B., Wang, Z., Qin, L., Liao, W.H.: Knee exoskeletons for gait rehabilitation and human performance augmentation: a state-of-the-art. Mech. Mach. Theory 134, 499–511 (2019)
Plooij, M., Wisse, M., Vallery, H.: Reducing the energy consumption of robots using the bidirectional clutched parallel elastic actuator. IEEE Trans. Robot. 32(6), 1512–1523 (2016)
Mathijssen, G., Furnemont, R., Brackx, B., Van Ham, R., Lefeber, D., Vanderborght, B.: Design of a novel intermittent self-closing mechanism for a MACCEPA-based Series-Parallel Elastic Actuator (SPEA). In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2809–2814 (2014)
Beyl, P., Van Damme, M., Van Ham, R., Vanderborght, B.: Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE/ASME Trans. Mechatron. 19(3), 1046–1056 (2014)
Hollander, K.W., Ilg, R., Sugar, T.G., Herring, D.: “An efficient robotic tendon for gait assistance. J. Biomech. Eng. 128(5), 788–791 (2006)
Migliore, S.A., Brown, E.A.: Biologically inspired joint stiffness control. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 4519–4524 (2005)
Wolf, S., et al.: Variable stiffness actuators: review on design and components. IEEE/ASME Trans. Mechatron. 21(5), 2418–2430 (2016)
Tagliamonte, N.L., Sergi, F., Accoto, D., Carpino, G., Guglielmelli, E.: Double actuation architectures for rendering variable impedance in compliant robots: a review. Mechatronics 22(8), 1187–1203 (2012)
Lemerle, S., Grioli, G.¸ Bicchi, A., Catalano, M.G.: A variable stiffness elbow joint for upper limb prosthesis. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7327–7334 (2019)
Liu, Y., Liu, X., Yuan, Z., Liu, J.: Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle. Mech. Mach. Theory 140, 44–58 (2019)
Bilancia, P., Berselli, G., Palli, G.: Virtual and physical prototyping of a beam-based variable stiffness actuator for safe human-machine interaction. Robot. Comput. Integr. Manuf. 65, 101886 (2020)
Hollander, K., Sugar, T., Herring, D.: Adjustable robotic tendon using a ‘jack spring’. In: Proceedings of 9th International Conference on Rehabilitation Robotics (ICORR 2005), pp. 113–118 (2005)
Xu, Y., Guo, K., Sun, J., Li, J.: Design, modeling and control of a reconfigurable variable stiffness actuator. Mech. Syst. Signal Process. 160, 107883 (2021)
Xu, Y., Guo, K., Sun, J., Li, J.: Design and analysis of a linear digital variable stiffness actuator. IEEE Access 9, 13992–14004 (2021)
Xu, Y., Guo, K., Li, J., Li, Y.: A novel rotational actuator with variable stiffness using S-shaped springs. IEEE/ASME Trans. Mechatron. 26(4), 2249–2260 (2020)
Wolf, S., Hirzinger, G.: A new variable stiffness design: matching requirements of the next robot generation. Accepted at ICRA 2008: IEEE International Conference on Robotics and Automation (ICRA2008) (2008)
Chen, G., Qi, P., Guo, Z., Yu, H.: Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation. Mech. Mach. Theory 103, 51–64 (2016)
Li, X., Liu, Y., Yu, H.: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica 90(90), 1–7 (2018)
Haldane, D.W., Plecnik, M.M., Yim, J.K., Fearing, R.S.: Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1(1), eaag2048 (2016)
Yu, H., Huang, S., Chen, G., Thakor, N.: Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23(8), 1072–1083 (2013)
Guo, K., Li, M., Shi, W.¸ Pan, Y., et al.: Adaptive tracking control of hydraulic systems with improved parameter convergence. IEEE Trans. Ind. Electron., 1 (2021). https://doi.org/10.1109/TIE.2021.3101006
Guo, K., Pan, Y., Zheng, D., Yu, H., et al.: Composite learning control of robotic systems: a least squares modulated approach. Automatica 111, 108612 (2020)
Guo, K., Zheng, D., Li, J.: Optimal bounded ellipsoid identification with deterministic and bounded learning gains: design and application to Euler-Lagrange Systems. IEEE Trans. Cybern., 1–14 (2021). https://doi.org/10.1109/TCYB.2021.3066639
Guo, K., Pan, Y., Yu, H.: Composite learning robot control with friction compensation: a neural network-based approach. IEEE Trans. Ind. Electron. 66(10), 7841–7851 (2019)
Zhang, Y., Guo, K., Sun, J., Sun, Y., et al.: Method of postures selection for industrial robot joint stiffness identification. IEEE Access 9, 1–10 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Cui, C., Guo, K., Sun, J. (2021). Variable Stiffness Actuator Structure for Robot. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13013. Springer, Cham. https://doi.org/10.1007/978-3-030-89095-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-89095-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89094-0
Online ISBN: 978-3-030-89095-7
eBook Packages: Computer ScienceComputer Science (R0)