Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Artemov and Protopopescu’s Intuitionistic Epistemic Logic Expanded with Distributed Knowledge

  • Conference paper
  • First Online:
Logic, Rationality, and Interaction (LORI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13039))

Included in the following conference series:

Abstract

Artemov and Protopopescu (2018) introduced a Brouwer-Heyting-Kolmogorov (BHK) interpretation of knowledge operator to define the intuitionistic epistemic logic IEL, where the axiom \(A\supset KA\) is accepted but the axiom \(KA\supset A\) is refused. This paper studies the notion of distributed knowledge on an expansion of the multi agent variant of IEL. We provide a BHK interpretation of distributed knowledge operator to define the intuitionistic epistemic logic with distributed knowledge DIEL. We construct Hilbert system and cut-free sequent calculus for \(\mathbf {DIEL}\) and show that they are sound and complete for the intended Kripke semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To derive \( D_{\{a\}} A \supset \lnot \lnot A \) in \(\mathcal {H}\mathbf {(DIEL)}\), i.e., the extension of \(\mathcal {H}(\mathbf {DIEL}^-)\) by the axiom \(\lnot D_{\{a\}} \bot \), it is noted that the following are derivable in Hilbert system \(\mathcal {H}\mathbf {(DIEL)}\) : \((D_{\{a\}} A \wedge \lnot A )\supset (D_{\{a\}} A \wedge D_{\{a\}}\lnot A )\) and \((D_{\{a\}} A \wedge D_{\{a\}}\lnot A ) \supset D_{\{a\}}( A \wedge \lnot A )\). Thus, \(\mathcal {H}\mathbf {(DIEL)}\vdash (D_{\{a\}} A \wedge \lnot A )\supset D_{\{a\}} \bot \). Since \(\lnot D_{\{a\}} \bot \) holds in the extension \(\mathcal {H}\mathbf {(DIEL)}\), we have \(\mathcal {H}\mathbf {(DIEL)}\vdash (D_{\{a\}} A \wedge \lnot A ) \supset \bot \). This gives us \(\mathcal {H}\mathbf {(DIEL)}\vdash D_{\{a\}} A \supset \lnot \lnot A\), as desired. Conversely, we derive \(\lnot D_{\{a\}} \bot \) in the extension of \(\mathcal {H}(\mathbf {DIEL}^-)\) by the axiom \( D_{\{a\}} A \supset \lnot \lnot A\). This is easy by taking \(\bot \) as A in the axiom.

  2. 2.

    For a semantic proof of the Craig interpolation theorem of the intuitionistic logic, see [8, 18].

References

  1. Ågotnes, T., Wáng, Y.N.: Resolving distributed knowledge. Artif. Intell. 252, 1–21 (2017). https://doi.org/10.1016/j.artint.2017.07.002

    Article  Google Scholar 

  2. Ågotnes, T., Wáng, Y.N.: Group belief. In: Dastani, M., Dong, H., van der Torre, L. (eds.) CLAR 2020. LNCS (LNAI), vol. 12061, pp. 3–21. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44638-3_1

    Chapter  Google Scholar 

  3. Artemov, S., Protopopescu, T.: Intuitionistic epistemic logic. Rev. Symb. Logic 9, 266–298 (2016). https://doi.org/10.1017/S1755020315000374

    Article  Google Scholar 

  4. Blackburn, P., Rijke, M.d., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2001). https://doi.org/10.1017/CBO9781107050884

  5. Dummett, M.A., Lemmon, E.J.: Modal logics between S4 and S5. Math. Log. Q. 5(14–24), 250–264 (1959)

    Article  Google Scholar 

  6. Fagin, R., Halpern, J.Y., Vardi, M.Y.: What can machines know? On the properties of knowledge in distributed systems. J. ACM 39, 328–376 (1996)

    Article  Google Scholar 

  7. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (2003)

    Google Scholar 

  8. Gabbay, D.M.: Semantic proof of the Craig interpolation theorem for intuitionistic logic and extensions. In: Gandy, R., Yates, C. (eds.) Logic Colloquium 1969, Studies in Logic and the Foundations of Mathematics, vol. 61, pp. 391–410. Elsevier (1971). https://doi.org/10.1016/S0049-237X(08)71239-4

  9. Gerbrandy, J.: Bisimulations on planet Kripke. Ph.D. thesis, University of Amsterdam (1999)

    Google Scholar 

  10. Giedra, H.: Cut free sequent calculus for logic \({S5_n (ED)}\). Lietuvos matematikos rinkinys 51, 336–341 (2010)

    Article  Google Scholar 

  11. Hakli, R., Negri, S.: Proof theory for distributed knowledge. In: Sadri, F., Satoh, K. (eds.) CLIMA 2007. LNCS (LNAI), vol. 5056, pp. 100–116. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88833-8_6

    Chapter  Google Scholar 

  12. Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 221–233. Springer, Heidelberg (2005). https://doi.org/10.1007/11417170_17

    Chapter  Google Scholar 

  13. van der Hoek, W., van Linder, B., Meyer, J.J.: Group knowledge is not always distributed (neither is it always implicit). Math. Soc. Sci. 38(2), 215–240 (1999)

    Article  Google Scholar 

  14. Jäger, G., Marti, M.: A canonical model construction for intuitionistic distributed knowledge. In: Advances in Modal Logic, vol. 11, pp. 420–434. College Publications (2016)

    Google Scholar 

  15. Krupski, V.N., Yatmanov, A.: Sequent calculus for intuitionistic epistemic logic IEL. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 187–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_14

    Chapter  Google Scholar 

  16. Murai, R., Sano, K.: Craig interpolation of epistemic logics with distributed knowledge. In: Herzig, A., Kontinen, J. (eds.) FoIKS 2020. LNCS, vol. 12012, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39951-1_13

    Chapter  Google Scholar 

  17. Murai, R., Sano, K.: Intuitionistic epistemic logic with distributed knowledge. In: Procedia Computer Science. Elsevier (to appear)

    Google Scholar 

  18. Ono, H.: Craig’s interpolation theorem for the intuitionistic logic and its extensions: a semantical approach. Studia Logica, 19–33 (1986)

    Google Scholar 

  19. Pliuskevicius, R., Pliuskeviciene, A.: Termination of derivations in a fragment of transitive distributed knowledge logic. Informatica Lith. Acad. Sci. 19, 597–616 (2008)

    Google Scholar 

  20. Protopopescu, T.: Three essays in intuitionistic epistemology. Ph.D. thesis. The Graduate Center, City University of New York (2016)

    Google Scholar 

  21. Roelofsen, F.: Distributed knowledge. J. Appl. Non-Classical Logics 17(2), 255–273 (2007)

    Article  Google Scholar 

  22. Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for modal logic. In: Studies in Logic and the Foundations of Mathematics, vol. 82, pp. 110–143. Elsevier (1975)

    Google Scholar 

  23. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis. University of Edinburgh (1994)

    Google Scholar 

  24. Su, Y., Sano, K.: First-order intuitionistic epistemic logic. In: Blackburn, P., Lorini, E., Guo, M. (eds.) LORI 2019. LNCS, vol. 11813, pp. 326–339. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60292-8_24

    Chapter  Google Scholar 

  25. Su, Y., Sano, K.: Cut-free and analytic sequent calculus of intuitionistic epistemic logic. In: The Logica Yearbook 2019, pp. 179–192. College Publications, London (2020)

    Google Scholar 

  26. Troelstra, A.S.: History of Constructivism in the 20th Century. Lecture Notes in Logic, pp. 150–179, Cambridge University Press (2011). https://doi.org/10.1017/CBO9780511910616.009

  27. Wáng, Y.N., Ågotnes, T.: Simpler completeness proofs for modal logics with intersection. In: Martins, M.A., Sedlár, I. (eds.) Dynamic Logic. New Trends and Applications - Third International Workshop. LNCS, vol. 12569, pp. 259–276. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3_16

  28. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logics as fragments of classical bimodal logics. In: Logic At Work, pp. 168–186 (1997)

    Google Scholar 

Download references

Acknowledgment

We would like to thank the reviewers for their helpful comments. The work of the first author was supported by JSPS KAKENHI Grant Number JP 20J11427. The work of the second author was supported by JSPS KAKENHI Grant Number JP 21J10573. The work of the third author was partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) Grant Number 17H02258 and (C) Grant Number 19K12113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Sano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, Y., Murai, R., Sano, K. (2021). On Artemov and Protopopescu’s Intuitionistic Epistemic Logic Expanded with Distributed Knowledge. In: Ghosh, S., Icard, T. (eds) Logic, Rationality, and Interaction. LORI 2021. Lecture Notes in Computer Science(), vol 13039. Springer, Cham. https://doi.org/10.1007/978-3-030-88708-7_18

Download citation

Publish with us

Policies and ethics