Nothing Special   »   [go: up one dir, main page]

Skip to main content

Overview of the NLPCC 2021 Shared Task: AutoIE2

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13029))

  • 1643 Accesses

Abstract

This is an overview paper of the NLPCC 2021 shared task on AutoIE2, which aims to evaluate the sub-event identification systems with limited annotated data. Given definitions of specific sub-events, 100K unannotated samples and 300 annotated seed samples, participants are required to build a sub-event identification system. 30 teams registered and 14 of them submitted results. The top system achieves \(8.43\%\) and \(8.25\%\) accuracy score improvement upon the baseline system with or without extra annotated data respectively. The evaluation result indicates that it is possible to use less human annotation and large unlabeled corpora for the sub-event identification system. ALL information about this task can be found at https://github.com/IIGROUP/AutoIE2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.weibo.com/.

  2. 2.

    https://github.com/dbiir/UER-py.

  3. 3.

    https://github.com/IIGROUP/AutoIE2/tree/main/baseline.

References

  1. Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 37–45 (1998)

    Google Scholar 

  2. Becker, H., Naaman, M., Gravano, L.: Learning similarity metrics for event identification in social media. In: Davison, B.D., Suel, T., Craswell, N., Liu, B. (eds.) Proceedings of the Third International Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA, 4–6 February 2010, pp. 291–300. ACM (2010). https://doi.org/10.1145/1718487.1718524

  3. Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Sub-event detection from twitter streams as a sequence labeling problem. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 745–750. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1081, https://www.aclweb.org/anthology/N19-1081

  4. Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: recent advances and new frontiers. SIGKDD Explor. Newsl. 19(2), 25–35 (2017)

    Article  Google Scholar 

  5. Cowie, J., Lehnert, W.: Information extraction. Commun. ACM 39(1), 80–91 (1996)

    Article  Google Scholar 

  6. Du, J., Grave, E., Gunel, B., Chaudhary, V., Celebi, O., Auli, M., Stoyanov, V., Conneau, A.: Self-training improves pre-training for natural language understanding. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. pp. 5408–5418. Association for Computational Linguistics, Online (2021), https://www.aclweb.org/anthology/2021.naacl-main.426

  7. Ein-Dor, L., et al.: Active Learning for BERT: An Empirical Study. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7949–7962. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.638, https://www.aclweb.org/anthology/2020.emnlp-main.638

  8. Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in text streams. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 181–192. Citeseer (2005)

    Google Scholar 

  9. Gao, Y., Wang, F., Luan, H., Chua, T.S.: Brand data gathering from live social media streams. In: Proceedings of International Conference on Multimedia Retrieval, pp. 169–176 (2014)

    Google Scholar 

  10. Gao, Y., Zhao, S., Yang, Y., Chua, T.-S.: Multimedia social event detection in microblog. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8935, pp. 269–281. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14445-0_24

    Chapter  Google Scholar 

  11. Greengrass, E.: Information retrieval: a survey (2000)

    Google Scholar 

  12. Jie, Z., Xie, P., Lu, W., Ding, R., Li, L.: Better modeling of incomplete annotations for named entity recognition. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 729–734. Association for Computational Linguistics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1079, https://www.aclweb.org/anthology/N19-1079

  13. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=H1eA7AEtvS

  14. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  15. Mann, G.S., McCallum, A.: Generalized expectation criteria for semi-supervised learning with weakly labeled data. J. Mach. Learn. Res. 11(2), 955–984 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Meladianos, P., Nikolentzos, G., Rousseau, F., Stavrakas, Y., Vazirgiannis, M.: Degeneracy-based real-time sub-event detection in twitter stream. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 9 (2015)

    Google Scholar 

  17. Meladianos, P., Xypolopoulos, C., Nikolentzos, G., Vazirgiannis, M.: An optimization approach for sub-event detection and summarization in twitter. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 481–493. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76941-7_36

    Chapter  Google Scholar 

  18. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019)

  19. Reuter, T., Cimiano, P.: Event-based classification of social media streams. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, pp. 1–8 (2012)

    Google Scholar 

  20. Sarawagi, S.: Information Extraction. Now Publishers Inc., Norwell (2008)

    MATH  Google Scholar 

  21. Unankard, S., Li, X., Sharaf, M., Zhong, J., Li, X.: Predicting elections from social networks based on sub-event detection and sentiment analysis. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8787, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11746-1_1

    Chapter  Google Scholar 

  22. Wang, Y., et al.: Adaptive self-training for few-shot neural sequence labeling. arXiv preprint arXiv:2010.03680 (2020)

  23. Weng, J., Lee, B.S.: Event detection in twitter. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 5 (2011)

    Google Scholar 

  24. Yang, X., Wu, B., Jie, Z., Liu, Y.: Overview of the NLPCC 2020 shared task: AutoIE. In: Zhu, X., Zhang, M., Hong, Yu., He, R. (eds.) NLPCC 2020. LNCS (LNAI), vol. 12431, pp. 558–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60457-8_46

    Chapter  Google Scholar 

  25. Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event detection. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 28–36 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, W. et al. (2021). Overview of the NLPCC 2021 Shared Task: AutoIE2. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13029. Springer, Cham. https://doi.org/10.1007/978-3-030-88483-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88483-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88482-6

  • Online ISBN: 978-3-030-88483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics