Nothing Special   »   [go: up one dir, main page]

Skip to main content

When Few-Shot Learning Meets Large-Scale Knowledge-Enhanced Pre-training: Alibaba at FewCLUE

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2021)

Abstract

With the wide popularity of Pre-trained Language Models (PLMs), it has been a hot research topic to improve the performance of PLMs in the few-shot learning setting. FewCLUE is a new benchmark to evaluate the few-shot learning ability of PLMs over nine challenging Chinese language understanding tasks, which poses significant challenges to the learning process of PLMs with very little training data available. In this paper, we present our solution to FewCLUE tasks by means of large-scale knowledge-enhanced pre-training over massive texts and knowledge triples, together with a new few-shot learning algorithm for downstream tasks. Experimental results show that the generated models achieve the best performance in both limited and unlimited tracks of FewCLUE. Our solution is developed upon the PyTorch version of the EasyTransfer toolkit and will be released to public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/CLUEbenchmark/FewCLUE.

  2. 2.

    For the Chinese language, we can use multiple masked tokens to generate model outputs in the form of multiple Chinese characters. For simplicity, in the algorithm description, we assume there is only one masked token.

  3. 3.

    https://commoncrawl.org/.

References

  1. Bao, H., et al.: UniLMv2: pseudo-masked language models for unified language model pre-training. In: ICML, vol. 119, pp. 642–652 (2020)

    Google Scholar 

  2. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  3. Brown, T.B., et al.: Language models are few-shot learners. In: NeurIPS (2020)

    Google Scholar 

  4. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear memory cost. CoRR abs/1604.06174 (2016)

    Google Scholar 

  5. Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z., Wang, S., Hu, G.: Pre-training with whole word masking for Chinese BERT. CoRR abs/1906.08101 (2019)

    Google Scholar 

  6. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: ACL, pp. 2978–2988 (2019)

    Google Scholar 

  7. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  8. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot learners. CoRR abs/2012.15723 (2020)

    Google Scholar 

  9. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: CVPR, pp. 2704–2713 (2018)

    Google Scholar 

  10. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. In: ICLR (2020)

    Google Scholar 

  11. Liu, X., et al.: GPT understands, too. CoRR abs/2103.10385 (2021)

    Google Scholar 

  12. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019)

    Google Scholar 

  13. Micikevicius, P., et al.: Mixed precision training. CoRR abs/1710.03740 (2017)

    Google Scholar 

  14. Peters, M.E., et al.: Knowledge enhanced contextual word representations. In: EMNLP, pp. 43–54 (2019)

    Google Scholar 

  15. Phang, J., Févry, T., Bowman, S.R.: Sentence encoders on stilts: supplementary training on intermediate labeled-data tasks. CoRR abs/1811.01088 (2018)

    Google Scholar 

  16. Qiu, M., et al.: EasyTransfer - a simple and scalable deep transfer learning platform for NLP applications. CIKM 2021 (2020). https://arxiv.org/abs/2011.09463

  17. Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained models for natural language processing: a survey. CoRR abs/2003.08271 (2020)

    Google Scholar 

  18. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 140:1–140:67 (2020)

    Google Scholar 

  19. Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: DeepSpeed: system optimizations enable training deep learning models with over 100 billion parameters. In: SIGKDD, pp. 3505–3506. ACM (2020)

    Google Scholar 

  20. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification and natural language inference. In: EACL, pp. 255–269 (2021)

    Google Scholar 

  21. Shin, T., Razeghi, Y., IV, R.L.L., Wallace, E., Singh, S.: AutoPrompt: eliciting knowledge from language models with automatically generated prompts. In: EMNLP, pp. 4222–4235 (2020)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  23. Wang, A., et al.: SuperGLUE: a stickier benchmark for general-purpose language understanding systems. In: NeurIPS, pp. 3261–3275 (2019)

    Google Scholar 

  24. Wang, S., Fang, H., Khabsa, M., Mao, H., Ma, H.: Entailment as few-shot learner. CoRR abs/2104.14690 (2021)

    Google Scholar 

  25. Wang, W., et al.: StructBERT: incorporating language structures into pre-training for deep language understanding. In: ICLR (2020)

    Google Scholar 

  26. Wang, X., Gao, T., Zhu, Z., Liu, Z., Li, J., Tang, J.: KEPLER: a unified model for knowledge embedding and pre-trained language representation. CoRR abs/1911.06136 (2019)

    Google Scholar 

  27. Xu, L., et al.: CLUE: a Chinese language understanding evaluation benchmark. In: COLING, pp. 4762–4772 (2020)

    Google Scholar 

  28. Xu, L., Zhang, X., Dong, Q.: CLUECorpus 2020: a large-scale Chinese corpus for pre-training language model. CoRR abs/2003.01355 (2020)

    Google Scholar 

  29. Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: NeurIPS, pp. 5754–5764 (2019)

    Google Scholar 

  30. Yin, W., Rajani, N.F., Radev, D.R., Socher, R., Xiong, C.: Universal natural language processing with limited annotations: try few-shot textual entailment as a start. In: EMNLP, pp. 8229–8239 (2020)

    Google Scholar 

  31. Zhang, D., et al.: E-BERT: a phrase and product knowledge enhanced language model for e-commerce. CoRR abs/2009.02835 (2020)

    Google Scholar 

  32. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: enhanced language representation with informative entities. In: ACL, pp. 1441–1451 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z. et al. (2021). When Few-Shot Learning Meets Large-Scale Knowledge-Enhanced Pre-training: Alibaba at FewCLUE. In: Wang, L., Feng, Y., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2021. Lecture Notes in Computer Science(), vol 13029. Springer, Cham. https://doi.org/10.1007/978-3-030-88483-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88483-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88482-6

  • Online ISBN: 978-3-030-88483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics