Nothing Special   »   [go: up one dir, main page]

Skip to main content

Binary Sequences Derived from Monomial Permutation Polynomials over GF(2\(^{p}\))

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13007))

Included in the following conference series:

  • 729 Accesses

Abstract

In this paper, we propose a class of binary sequences induced by monomial permutation polynomials over \(\mathrm {GF}(2^{p})\) and study the period property and the shift-equivalence of these binary sequences. In particularly, we give a necessary and sufficient condition for such a sequence to have maximal period. Moreover, we also give a necessary and sufficient condition for two such sequences to be shift equivalent.

This work was supported by NSF of China (Nos. 61872383). The work of Qun-Xiong Zheng was also supported by Young Elite Scientists Sponsorship Program by CAST (2016QNRC001) and by National Postdoctoral Program for Innovative Talents (BX201600188) and by China Postdoctoral Science Foundation funded project (2017M611035).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  2. Mullen, G.L., Panario, D.: Handbook of Finite Fields. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  3. Hou, X.D.: Permutation polynomials over finite fields - a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)

    Article  MathSciNet  Google Scholar 

  4. Tu, Z., Zeng, X.: A class of permutation trinomials over finite fields of odd characteristic. Cryptogr. Commun 11(4), 563–583 (2018). https://doi.org/10.1007/s12095-018-0307-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Tu, Z.R., Zeng, X.Y., Jiang, Y.P.: Two classes of permutation polynomials having the form \((x^{2^{m}}+x+\delta )^{s}+x\). Finite Fields Appl. 53, 99–112 (2018)

    Article  MathSciNet  Google Scholar 

  6. Wang, L.B., Wu, B.F.: General constructions of permutation polynomials of the form \((x^{2^{m}}+x+\delta )^{i(2^{m}-1)+1}+x\) over \(F_{2^{2m}}\). Finite Fields Appl. 52, 137–155 (2018)

    Article  MathSciNet  Google Scholar 

  7. Feng, X.T., Lin, D.D., Wang, L.P., Wang, Q.: Further results on complete permutation monomials over finite fields. Finite Fields Appl. 57, 47–59 (2019)

    Article  MathSciNet  Google Scholar 

  8. Xu, X.F., Feng, X.T., Zeng, X.Y.: Complete permutation polynomials with the form \((x^{p^{m}}-x+\delta )^{s}+ax^{p^{m}}+bx\) over \(F_{p^{n}}\). Finite Fields Appl. 57, 309–343 (2019)

    Article  MathSciNet  Google Scholar 

  9. Wu, B.F., Lin, D.D.: On constructing complete permutation polynomials over finite fields of even characteristic. Disc. Appl. Math. 184, 213–222 (2015)

    Article  MathSciNet  Google Scholar 

  10. Niederreiter, H.: Pseudorandom vector generation by the inversive method. ACM Trans. Model. Comput. Simul. 4(2), 191–212 (1994)

    Article  Google Scholar 

  11. Anderson, S.L.: Random number generators on vector supercomputers and other advanced architectures. SIAM Rev. 32, 221–251 (1990)

    Article  MathSciNet  Google Scholar 

  12. Bhavsar, V.C., Isaac, J.R.: Design and analysis of parallel Monte Carlo algorithms. SIAM J. Sci. Stat. Comput. 8, s73–s95 (1987)

    Article  MathSciNet  Google Scholar 

  13. Eddy, W.F.: Random number generators for parallel processors. J. Comput. Appl. Math. 31, 63–71 (1986)

    Article  MathSciNet  Google Scholar 

  14. Menezes, A.J., Blake, I.F., et al.: Applications of Finite Fields. Kluwer Academic Publishers, New York (1993)

    MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, QX., Jiang, Y., Lin, D., Qi, WF. (2021). Binary Sequences Derived from Monomial Permutation Polynomials over GF(2\(^{p}\)). In: Yu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2021. Lecture Notes in Computer Science(), vol 13007. Springer, Cham. https://doi.org/10.1007/978-3-030-88323-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88323-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88322-5

  • Online ISBN: 978-3-030-88323-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics