Abstract
Intracellular organelles such as the endoplasmic reticulum, mitochondria, and the cell nucleus exhibit complex structures and diverse morphologies. These intracellular structures (ICSs) play important roles in serving essential physiological functions of cells. Their accurate segmentation is crucial to many important life sciences and clinical applications. When using deep learning-based segmentation models to extract ICSs in fluorescence microscopy images (FLMIs), we find that U-Net provides superior performance, while other well-designed models such as DeepLabv3+ and SegNet perform poorly. By investigating the relative importance of the features learned by U-Net, we find that low-level features play a dominant role. Therefore, we develop a simple strategy that modifies general-purpose segmentation models by fusing low-level features via a decoder architecture to improve their performance in segmenting ICSs from FLMIs. For a given segmentation model, we first use a group of convolutions at the original image scale as the input layer to obtain low-level features. We then use a decoder to fuse the multi-scale features, which directly passes information of low-level features to the prediction layer. Experimental results on two custom datasets, ER and MITO, and a public dataset NUCLEUS, show that the strategy substantially improves the performance of all the general-purpose models tested in segmentation of ICSs from FLMIs. Data and code of this study are available at https://github.com/cbmi-group/icss-segmentation.
Y. Guo and J. Huang—Equal contributors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Moen, E., Bannon, D., Kudo, T., et al.: Deep learning for cellular image analysis. Nat. Methods 16(12), 1233–1246 (2019)
Nixon-Abell, J., Obara, C.J., Weigel, A.V., et al.: Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354(6311), aaf3928 (2016)
Mootha, V.K., Bunkenborg, J., Olsen, J.V., et al.: Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115(5), 629–640 (2003)
Diaspro, A.: Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances. Wiley-Liss. Hoboken (2002)
Pain, C., Kriechbaumer, V., Kittelmann, M., et al.: Quantitative analysis of plant ER architecture and dynamics. Nat. Commun. 10(1), 1–15 (2019)
Mitra, K., Lippincott‐Schwartz, J.: Analysis of mitochondrial dynamics and functions using imaging approaches. Curr. Protoc. Cell Biol. 46(1), 4.25. 1–4.25. 21 (2010)
Yaffe, M.P.: Dynamic mitochondria. Nat. Cell Biol. 1(6), E149–E150 (1999)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Everingham, M., Van Gool, L., Williams, C.K., et al.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Hu, X., Yu, L., Chen, H., Qin, J., Heng, P.A.: AGNet: attention-guided network for surgical tool presence detection. In: Cardoso, M., et al. (eds.) DLMIA 2017, ML-CDS 2017. LNCS, vol. 10553, pp. 186–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_22
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., et al.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851 Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2015)
Peng, C., Zhang, X., Yu, G., et al.: Large kernel matters–improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361. IEEE (2017)
Wang, J., Sun, K., Cheng, T., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Zhao, H., Shi, J., Qi, X., et al.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890. IEEE (2017)
Zhang Z., Zhang X., Peng C., Xue X., Sun J.: ExFuse: enhancing feature fusion for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 273–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_17
Li, H., Xiong, P., Fan, H., et al.: DFANet: deep feature aggregation for real-time semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9522–9531. IEEE (2019)
Liu, S., Qi, L., Qin, H., et al.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768. IEEE (2018)
Caicedo, J.C., Goodman, A., Karhohs, K.W., et al.: Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat. Methods 16(12), 1247–1253 (2019)
Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)
Acknowledgements
This study was supported in part by NSFC grant 91954201 and grant 31971289, the Strategic Priority Research Program of the Chinese Academy of Sciences grant XDB37040402, the Chinese Academy of Sciences grant 292019000056, the University of Chinese Academy of Sciences grant 115200M001, and the Beijing Municipal Science & Technology Commission grant 5202022.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, Y., Huang, J., Zhou, Y., Luo, Y., Li, W., Yang, G. (2021). Segmentation of Intracellular Structures in Fluorescence Microscopy Images by Fusing Low-Level Features. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-88010-1_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88009-5
Online ISBN: 978-3-030-88010-1
eBook Packages: Computer ScienceComputer Science (R0)