Nothing Special   »   [go: up one dir, main page]

Skip to main content

Self-guided Multi-attention Network for Periventricular Leukomalacia Recognition

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2021)

Abstract

Recognition of Periventricular Leukomalacia (PVL) from Magnetic Resonance Image (MRI) is essential for early diagnosis and intervention of cerebral palsy (CP). However, due to the subtle appearance difference of tissues between damaged and healthy brains, the performance of deep learning based PVL recognition has not been satisfactory. In this paper, we propose a self-guided multi-attention network to improve the performance for classification and recognition. In particular, we first conduct semantic segmentation to delineate four target regions and brain tissues as regions of interest (RoIs), which are pathologically related to PVL and should be focused in terms of the attention of the classification network. Then, the attention-based network is further designed to focus on the extracted PVL lesions when training the network. Moreover, the novel self-guided training strategy can provide comprehensive information for the classification network, and hence, optimize the generation of attention map then further improve the classification performance. Experimental results show that our method can effectively improve the precision of recognizing PVLs.

Z. Wang and T. Huang—have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Novak, I., et al.: Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 171(9), 897–907 (2017)

    Article  Google Scholar 

  2. Morgan, C., Fahey, M., Roy, B., Novak, I.: Diagnosing cerebral palsy in full-term infants. J. Paediatr. Child Health 54(10), 1159–1164 (2018)

    Article  Google Scholar 

  3. Drougia, A., et al.: Incidence and risk factors for cerebral palsy in infants with perinatal problems: a 15-year review. Early Human Dev. 83(8), 541–547 (2007)

    Article  Google Scholar 

  4. Deng, W., Pleasure, J., Pleasure, D.: Progress in periventricular leukomalacia. Arch. Neurol. 65(10), 1291–1295 (2008)

    Article  Google Scholar 

  5. Franki, I., et al.: The relationship between neuroimaging and motor outcome in children with cerebral palsy: a systematic review-part A. Structural imaging. Res. Dev. Disabil. 100, 103606 (2020)

    Article  Google Scholar 

  6. Novak, C.M., Ozen, M., Burd, I.: Perinatal brain injury: mechanisms, prevention, and outcomes. Clin. Perinatol. 45(2), 357–375 (2018)

    Article  Google Scholar 

  7. Ryll, U.C., Wagenaar, N., Verhage, C.H., Blennow, M., de Vries, L.S., Eliasson, A.-C.: Early prediction of unilateral cerebral palsy in infants with asymmetric perinatal brain injury-model development and internal validation. Eur. J. Paediatr. Neurol. 23(4), 621–628 (2019)

    Article  Google Scholar 

  8. Li, K., Wu, Z., Peng, K.-C., Ernst, J., Fu, Y.: Tell me where to look: Guided attention inference network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9215–9223 (2018)

    Google Scholar 

  9. Ouyang, X., et al.: Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Kirillov, A., Wu, Y., He, K., Girshick, R.: PointRend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9799–9808 (2020)

    Google Scholar 

  12. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  13. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  14. Mahendran, A., Vedaldi, A.: Visualizing deep convolutional neural networks using natural pre-images. Int. J. Comput. Vis. 120(3), 233–255 (2016)

    Article  MathSciNet  Google Scholar 

  15. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  16. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921–2929 (2016)

    Google Scholar 

  17. Khurana, R., Shyamsundar, K., Taank, P., Singh, A.: Periventricular leukomalacia: an ophthalmic perspective. Med. J. Armed Forces India 77(2), 147–153 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Yang or Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z. et al. (2021). Self-guided Multi-attention Network for Periventricular Leukomalacia Recognition. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science(), vol 12928. Springer, Cham. https://doi.org/10.1007/978-3-030-87602-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87602-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87601-2

  • Online ISBN: 978-3-030-87602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics