Abstract
Image synthesis is nowadays a very rapidly evolving branch of deep learning. One of possible applications of image synthesis is an image-to-image translation. There is currently a lot of focus orientated to applications of image translation in medicine, mainly involving translation between different screening techniques. One of other possible use of image translation in medicine and biology is in the task of translation between various imaging techniques in modern microscopy. In this paper, we propose a novel method based on DenseNet architecture and we compare it with Pix2Pix model in the task of translation from images imaged using phase-contrast technique to fluorescence images with focus on usability for cell segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aida, S., Okugawa, J., Fujisaka, S., Kasai, T., Kameda, H., Sugiyama, T.: Deep learning of cancer stem cell morphology using conditional generative adversarial networks. Biomolecules 10(6), 931 (2020)
Christiansen, E.M., et al.: In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173(3), 792–803.e19 (2018)
Han, L., Yin, Z.: Transferring microscopy image modalities with conditional generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 851–859 (2017)
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018)
Itskovitz-Eldor, J.: 20th anniversary of isolation of human embryonic stem cells: a personal perspective. Stem Cell Rep. 10(5), 1439–1441 (2018). May
Landry, S., McGhee, P.L., Girardin, R.J., Keeler, W.J.: Monitoring live cell viability: comparative study of fluorescence, oblique incidence reflection and phase contrast microscopy imaging techniques. Opt. Express 12(23), 5754–5759 (2004)
Lee, G., Oh, J.W., Her, N.G., Jeong, W.K.: DeepHCS++: bright-field to fluorescence microscopy image conversion using multi-task learning with adversarial losses for label-free high-content screening. Med. Image Anal. 70, 101995 (2021)
Lee, G., Oh, J.-W., Kang, M.-S., Her, N.-G., Kim, M.-H., Jeong, W.-K.: DeepHCS: bright-field to fluorescence microscopy image conversion using deep learning for label-free high-content screening. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 335–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_38
Löser, P., Schirm, J., Guhr, A., Wobus, A.M., Kurtz, A.: Human embryonic stem cell lines and their use in international research. Stem Cells 28, 240–246 (2009)
Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014)
Ounkomol, C., Seshamani, S., Maleckar, M.M., Collman, F., Johnson, G.R.: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15(11), 917–920 (2018)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting (2016)
Polic, R.: Phase-contrast microscopy principle and applications in materials sciences, May 2020
Robson, A.L., et al.: Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front. Pharmacol. 9, 80 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rost, F.: Fluorescence microscopy, applications. In: Lindon, J.C., Tranter, G.E., Koppenaal, D.W. (eds.) Encyclopedia of Spectroscopy and Spectrometry, 3rd edn, pp. 627–631. Academic Press, Oxford (2017)
Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30
Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kozlovský, M., Wiesner, D., Svoboda, D. (2021). Transfer Learning in Optical Microscopy. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham. https://doi.org/10.1007/978-3-030-87592-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-87592-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87591-6
Online ISBN: 978-3-030-87592-3
eBook Packages: Computer ScienceComputer Science (R0)