Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transfer Learning in Optical Microscopy

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12965))

Included in the following conference series:

Abstract

Image synthesis is nowadays a very rapidly evolving branch of deep learning. One of possible applications of image synthesis is an image-to-image translation. There is currently a lot of focus orientated to applications of image translation in medicine, mainly involving translation between different screening techniques. One of other possible use of image translation in medicine and biology is in the task of translation between various imaging techniques in modern microscopy. In this paper, we propose a novel method based on DenseNet architecture and we compare it with Pix2Pix model in the task of translation from images imaged using phase-contrast technique to fluorescence images with focus on usability for cell segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aida, S., Okugawa, J., Fujisaka, S., Kasai, T., Kameda, H., Sugiyama, T.: Deep learning of cancer stem cell morphology using conditional generative adversarial networks. Biomolecules 10(6), 931 (2020)

    Article  Google Scholar 

  2. Christiansen, E.M., et al.: In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173(3), 792–803.e19 (2018)

    Google Scholar 

  3. Han, L., Yin, Z.: Transferring microscopy image modalities with conditional generative adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 851–859 (2017)

    Google Scholar 

  4. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)

    Google Scholar 

  5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018)

    Google Scholar 

  6. Itskovitz-Eldor, J.: 20th anniversary of isolation of human embryonic stem cells: a personal perspective. Stem Cell Rep. 10(5), 1439–1441 (2018). May

    Article  Google Scholar 

  7. Landry, S., McGhee, P.L., Girardin, R.J., Keeler, W.J.: Monitoring live cell viability: comparative study of fluorescence, oblique incidence reflection and phase contrast microscopy imaging techniques. Opt. Express 12(23), 5754–5759 (2004)

    Article  Google Scholar 

  8. Lee, G., Oh, J.W., Her, N.G., Jeong, W.K.: DeepHCS++: bright-field to fluorescence microscopy image conversion using multi-task learning with adversarial losses for label-free high-content screening. Med. Image Anal. 70, 101995 (2021)

    Article  Google Scholar 

  9. Lee, G., Oh, J.-W., Kang, M.-S., Her, N.-G., Kim, M.-H., Jeong, W.-K.: DeepHCS: bright-field to fluorescence microscopy image conversion using deep learning for label-free high-content screening. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 335–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_38

    Chapter  Google Scholar 

  10. Löser, P., Schirm, J., Guhr, A., Wobus, A.M., Kurtz, A.: Human embryonic stem cell lines and their use in international research. Stem Cells 28, 240–246 (2009)

    Article  Google Scholar 

  11. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014)

    Google Scholar 

  12. Ounkomol, C., Seshamani, S., Maleckar, M.M., Collman, F., Johnson, G.R.: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15(11), 917–920 (2018)

    Article  Google Scholar 

  13. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting (2016)

    Google Scholar 

  14. Polic, R.: Phase-contrast microscopy principle and applications in materials sciences, May 2020

    Google Scholar 

  15. Robson, A.L., et al.: Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front. Pharmacol. 9, 80 (2018)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Rost, F.: Fluorescence microscopy, applications. In: Lindon, J.C., Tranter, G.E., Koppenaal, D.W. (eds.) Encyclopedia of Spectroscopy and Spectrometry, 3rd edn, pp. 627–631. Academic Press, Oxford (2017)

    Google Scholar 

  18. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  19. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)

    Google Scholar 

  20. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kozlovský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozlovský, M., Wiesner, D., Svoboda, D. (2021). Transfer Learning in Optical Microscopy. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham. https://doi.org/10.1007/978-3-030-87592-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87592-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87591-6

  • Online ISBN: 978-3-030-87592-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics