Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Role of MRI Physics in Brain Segmentation CNNs: Achieving Acquisition Invariance and Instructive Uncertainties

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2021)

Abstract

Being able to adequately process and combine data arising from different sites is crucial in neuroimaging, but is difficult, owing to site, sequence and acquisition-parameter dependent biases. It is important therefore to design algorithms that are not only robust to images of differing contrasts, but also be able to generalise well to unseen ones, with a quantifiable measure of uncertainty. In this paper we demonstrate the efficacy of a physics-informed, uncertainty-aware, segmentation network that employs augmentation-time MR simulations and homogeneous batch feature stratification to achieve acquisition invariance. We show that the proposed approach also accurately extrapolates to out-of-distribution sequence samples, providing well calibrated volumetric bounds on these. We demonstrate a significant improvement in terms of coefficients of variation, backed by uncertainty based volumetric validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Project MONAI. https://doi.org/10.5281/zenodo.4323059

  2. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005). https://doi.org/10.1016/j.neuroimage.2005.02.018

    Article  Google Scholar 

  3. Billot, B., Greve, D., Van Leemput, K., Fischl, B., Iglesias, J.E., Dalca, A.V.: A learning strategy for contrast-agnostic MRI segmentation. arXiv (2020)

    Google Scholar 

  4. Borges, P., et al.: Physics-informed brain MRI segmentation. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 100–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_11

    Chapter  Google Scholar 

  5. Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.): MIUA 2020. CCIS, vol. 1248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4

    Book  Google Scholar 

  6. Eaton-Rosen, Z., Bragman, F., Bisdas, S., Ourselin, S., Cardoso, M.J.: Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 691–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_78

    Chapter  Google Scholar 

  7. Fortin, J.P., et al.: Harmonization of cortical thickness measurements across scanners and sites. NeuroImage 167, 104–120 (2018). https://doi.org/10.1016/j.neuroimage.2017.11.024

    Article  Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: 33rd International Conference on Machine Learning, ICML 2016, vol. 3, pp. 1651–1660 (2015)

    Google Scholar 

  9. Helms, G., et al.: Increased SNR and reduced distortions by averaging multiple gradient echo signals in 3D flash imaging of the human brain at 3T. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 29(1), 198–204 (2009)

    Google Scholar 

  10. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No New-Net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  11. Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, B., Amod, J.L.: MR image synthesis by contrast learning on neighborhood ensembles. Med. Image Anal. 24, 63–76 (2015). https://doi.org/10.1016/j.media.2015.05.002

    Article  Google Scholar 

  12. Jog, A., Hoopes, A., Greve, D.N., Van Leemput, K., Fischl, B.: PSACNN: pulse sequence adaptive fast whole brain segmentation. NeuroImage 199, 553–569 (2019)

    Article  Google Scholar 

  13. Johnson, W.E., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1), 118–127 (2007). https://doi.org/10.1093/biostatistics/kxj037

    Article  MATH  Google Scholar 

  14. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? Technical report (2017)

    Google Scholar 

  15. Pérez-García, F., Sparks, R., Ourselin, S.: TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput. Methods Prog. Biomed. 208, 106236 (2020)

    Article  Google Scholar 

  16. Pham, D.L., Chou, Y.-Y., Dewey, B.E., Reich, D.S., Butman, J.A., Roy, S.: Contrast adaptive tissue classification by alternating segmentation and synthesis. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds.) SASHIMI 2020. LNCS, vol. 12417, pp. 1–10. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59520-3_1

    Chapter  Google Scholar 

  17. Sabuncu, M.R., Yeo, B.T., Leemput, K.V., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Trans. Med. Imaging 29, 1714–1729 (2010). https://doi.org/10.1109/TMI.2010.2050897. https://pubmed.ncbi.nlm.nih.gov/20562040/

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. Technical report 56 (2014)

    Google Scholar 

  19. Zhao, F., et al.: Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 475–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_52

    Chapter  Google Scholar 

  20. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision 2017, October, pp. 2242–2251 (2017)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Wellcome Flagship Programme (WT213038/Z/18/Z) and Wellcome EPSRC CME (WT203148/Z/16/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Borges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borges, P. et al. (2021). The Role of MRI Physics in Brain Segmentation CNNs: Achieving Acquisition Invariance and Instructive Uncertainties. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham. https://doi.org/10.1007/978-3-030-87592-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87592-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87591-6

  • Online ISBN: 978-3-030-87592-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics