Abstract
Cerebral blood volume (CBV) refers to the blood volume of a certain brain tissue per unit time, which is the most useful parameter to evaluate intracranial mass lesions. However, the current CBV measurement methods rely on blood perfusion imaging technology which has obvious shortcomings, i.e., long imaging time, high cost, and great discomfort to the patients. To address this, we attempt to utilize some techniques to synthesize the CBV maps from multiple MRI sequences, which is the least harmful imaging technology currently, so as to reduce the time and cost of clinical diagnosis as well as the patients’ discomfort. Two image synthesis techniques are investigated to synthesize the CBV maps on our collection of 103 groups of multiple MRI modalities of 70 subjects. The experimental results on various modality combinations demonstrate that our redesigned algorithms are possible to synthesize promising CBV maps, which is a good start of developing efficient and cheaper CBV prediction system.
Y. Pan and J. Huang contribute equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cercignani, M., Bouyagoub, S.: Brain microstructure by multi-modal MRI: is the whole greater than the sum of its parts? Neuroimage 182, 117–127 (2018)
Cohen, J.P., Luck, M., Honari, S.: Distribution matching losses can hallucinate features in medical image translation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 529–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_60
Donahue, M.J., Juttukonda, M.R., Watchmaker, J.M.: Noise concerns and post-processing procedures in cerebral blood flow (CBF) and cerebral blood volume (CBV) functional magnetic resonance imaging. Neuroimage 154, 43–58 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hua, J., et al.: MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 187, 17–31 (2019)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5967–5976 (2017)
Jilaveanu, L.B., et al.: Tumor microvessel density as a prognostic marker in high-risk renal cell carcinoma patients treated on ECOG-ACRIN E2805. Clin. Cancer Res. 24(1), 217–223 (2018)
Laviña, B.: Brain vascular imaging techniques. Int. J. Mol. Sci. 18(1), 70 (2017)
Lee, F.K.H., King, A.D., Ma, B.B.Y., Yeung, D.K.W.: Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) for differential diagnosis in head and neck cancers. Eur. J. Radiol. 81(4), 784–788 (2012)
Ma, H., et al.: Three-dimensional arterial spin labeling imaging and dynamic susceptibility contrast perfusion-weighted imaging value in diagnosing glioma grade prior to surgery. Exp. Ther. Med. 13(6), 2691–2698 (2017)
Pan, Y., Liu, M., Lian, C., Xia, Y., Shen, D.: Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages. IEEE Trans. Med. Imaging 39(9), 2965–2975 (2020)
Pan, Y., Xia, Y.: Ultimate reconstruction: understand your bones from orthogonal views. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 1155–1158. IEEE (2021)
Shao, B., Liu, E.: Expression of ING4 is negatively correlated with cellular proliferation and microvessel density in human glioma. Oncol. Lett. 14(3), 3663–3668 (2017)
Acknowledgment
This work was supported in part by the Science and Technology Innovation Committee of Shenzhen Municipality, China, under Grants JCYJ20180306171334997, in part by the National Natural Science Foundation of China under Grants 61771397, in part by the China Postdoctoral Science Foundation under Grants BX2021333, and in part by the Taishan Scholars Program under Grants tsqn20161070.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pan, Y., Huang, J., Wang, B., Zhao, P., Liu, Y., Xia, Y. (2021). Cerebral Blood Volume Prediction Based on Multi-modality Magnetic Resonance Imaging. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham. https://doi.org/10.1007/978-3-030-87592-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-87592-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87591-6
Online ISBN: 978-3-030-87592-3
eBook Packages: Computer ScienceComputer Science (R0)