Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Scale and Position Invariant Task Classification Using Normalised Visual Scanpaths in Clinical Fetal Ultrasound

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12967))

Included in the following conference series:

Abstract

We present a method for classifying tasks in fetal ultrasound scans using the eye-tracking data of sonographers. The visual attention of a sonographer captured by eye-tracking data over time is defined by a scanpath. In routine fetal ultrasound, the captured standard imaging planes are visually inconsistent due to fetal position, movements, and sonographer scanning experience. To address this challenge, we propose a scale and position invariant task classification method using normalised visual scanpaths. We describe a normalisation method that uses bounding boxes to provide the gaze with a reference to the position and scale of the imaging plane and use the normalised scanpath sequences to train machine learning models for discriminating between ultrasound tasks. We compare the proposed method to existing work considering raw eye-tracking data. The best performing model achieves the F1-score of 84% and outperforms existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmidi, N., Hager, G.D., Ishii, L., Fichtinger, G., Gallia, G.L., Ishii, M.: Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 295–302. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_37

    Chapter  Google Scholar 

  2. Cai, Y., et al.: Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med. Image Anal. 65 (2020). https://doi.org/10.1016/j.media.2020.101762

  3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP 2014–2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, pp. 1724–1734 (2014). https://doi.org/10.3115/v1/d14-1179

  4. Droste, R., Cai, Y., Sharma, H., Chatelain, P., Papageorghiou, A.T., Noble, J.A.: Towards capturing sonographic experience: cognition-inspired ultrasound video saliency prediction. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 174–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_15

    Chapter  Google Scholar 

  5. Droste, R., Chatelain, P., Drukker, L., Sharma, H., Papageorghiou, A.T., Noble, J.A.: Discovering salient anatomical landmarks by predicting human gaze. In: Proceedings - International Symposium on Biomedical Imaging 2020-April, pp. 1711–1714 (2020). https://doi.org/10.1109/ISBI45749.2020.9098505

  6. Drukker, L., et al.: Transforming obstetric ultrasound into data science using eye tracking, voice recording, transducer motion and ultrasound video. Sci. Rep. 11(1), 14109 (2021). https://doi.org/10.1038/s41598-021-92829-1

  7. Ebeid, I.A., Bhattacharya, N., Gwizdka, J., Sarkar, A.: Analyzing gaze transition behavior using Bayesian mixed effects Markov models. In: Eye Tracking Research and Applications Symposium (ETRA) (2019). https://doi.org/10.1145/3314111.3319839

  8. Fuhl, W., Castner, N., Kübler, T., Lotz, A., Rosenstiel, W., Kasneci, E.: Ferns for area of interest free scanpath classification. In: Eye Tracking Research and Applications Symposium (ETRA) (2019). https://doi.org/10.1145/3314111.3319826

  9. Hild, J., Kühnle, C., Voit, M., Beyerer, J.: Predicting observer’s task from eye movement patterns during motion image analysis. In: Eye Tracking Research and Applications Symposium (ETRA) (2018). https://doi.org/10.1145/3204493.3204575

  10. Lee, Y.H., Wei, C.P., Cheng, T.H., Yang, C.T.: Nearest-neighbor-based approach to time-series classification. Decis. Support Syst. 53(1), 207–217 (2012). https://doi.org/10.1016/j.dss.2011.12.014. https://www.sciencedirect.com/science/article/pii/S0167923612000097

  11. Li, L., et al.: Massively parallel hyperparameter tuning. CoRR abs/1810.0 (2018). http://arxiv.org/abs/1810.05934

  12. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune: a research platform for distributed model selection and training (2018). https://arxiv.org/abs/1807.05118

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection (2018). https://arxiv.org/abs/1708.02002

  14. Openvinotoolkit: openvinotoolkit/cvat. https://github.com/openvinotoolkit/cvat

  15. Public Health England (PHE): NHS Fetal Anomaly Screening Programme Handbook, August 2018. https://www.gov.uk/government/publications/fetal-anomaly-screening-programme-handbook/20-week-screening-scan

  16. Sharma, H., Droste, R., Chatelain, P., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Spatio-temporal partitioning and description of full-length routine fetal anomaly ultrasound scans. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 987–990 (2019). https://doi.org/10.1109/ISBI.2019.8759149

  17. Sharma, H., Drukker, L., Chatelain, P., Droste, R., Papageorghiou, A.T., Noble, J.A.: Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med. Image Anal. 69, 101973 (2021). https://doi.org/10.1016/j.media.2021.101973. http://www.sciencedirect.com/science/article/pii/S1361841521000190

  18. Sharma, H., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Multi-modal learning from video, eye tracking, and pupillometry for operator skill characterization in clinical fetal ultrasound. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1646–1649 (2021). https://doi.org/10.1109/ISBI48211.2021.9433863

  19. Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953). https://doi.org/10.1007/bf02289263

    Article  Google Scholar 

  20. Yamak, P.T., Yujian, L., Gadosey, P.K.: A comparison between ARIMA, LSTM, and GRU for time series forecasting. In: ACM International Conference Proceeding Series, pp. 49–55 (2019). https://doi.org/10.1145/3377713.3377722

Download references

Acknowledgements

We acknowledge the ERC (Project PULSE: ERC-ADG-2015 694581) and the NIHR Oxford Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Teng, C., Sharma, H., Drukker, L., Papageorghiou, A.T., Noble, J.A. (2021). Towards Scale and Position Invariant Task Classification Using Normalised Visual Scanpaths in Clinical Fetal Ultrasound. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87583-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87582-4

  • Online ISBN: 978-3-030-87583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics