Abstract
The plug-and-play prior (P\(^{3}\)) is known as denoising prior which has been successfully applied to various imaging problems. In this work for accelerated dynamic cardiac cine magnetic resonance imaging (Dcc-MRI), we introduce a Spatio-tEmporal correlAtion based hyBrid plUg-and-play priorS (SEABUS) integrating local P\(^{3}\) and nonlocal P\(^{3}\), which further help both suppress aliasing artifacts and capture dynamic features. Specifically, the local P\(^{3}\) enforces the pixel-wise edge-orientation consistency by reference frame guided multi-scale orientation projection (MSOP) in a subset of few adjacent frames. The nonlocal P\(^{3}\) constrains the cube-wise anatomic-structure similarity by cube matching and 4D filtering (CM4D) in all frames. By composite splitting algorithm (CSA), the SEABUS is coupled into fast iterative shrinkage-thresholding algorithm (FISTA) and then a new Dcc-MRI approach that is named as SEABUS-FCSA is proposed. The experimental results on the in-vivo cardiac MR datasets demonstrated the efficiency and potential of the proposed SEABUS-FCSA approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices (2009). https://arxiv.org/abs/0905.0233
Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)
Angshul, M., Ward, R.K., Tyseer, A.: Compressed sensing based real-time dynamic MRI reconstruction. IEEE Trans. Med. Imaging 31(12), 2253–2266 (2012)
Chen, C., Li, Y.Q., Axel, L., Huang, J.Z.: Real time dynamic MRI by exploiting spatial and temporal sparsity. Magn. Reson. Imaging 34(4), 473–482 (2016)
Fan, L.A., Dl, A., Xj, A., Wq, A., Qi, X.B., Bs, A.: Dynamic cardiac MRI reconstruction using motion aligned locally low rank tensor (mallrt) - sciencedirect. Magn. Reson. Imaging 66, 104–115 (2020)
Otazo, R., Candès, E., Sodickson, D.K.: “Low” rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. In: Magnetic Resonance in Medicine, vol. 73, no. 3, pp. 1125–1136 (2015)
Miao, X., et al.: Accelerated cardiac cine MRI using locally low rank and finite difference constraints. Magn. Reson. Imaging 34(6), 707–714 (2016)
Ravishankar, S., Moore, B.E., Nadakuditi, R.R., Fessler, J.A.: Low-rank and adaptive sparse signal (LASSI) models for highly accelerated dynamic imaging. IEEE Trans. Med. Imaging 36(5), 1116–1128 (2017)
Liu, Y., Liu, T., Liu, J., Zhu, C.: Smooth robust tensor principal component analysis for compressed sensing of dynamic MRI. Pattern Recogn. 102(6), 107252 (2020)
Lingala, S.G., Jacob, M.: Blind compressive sensing dynamic MRI. IEEE Trans. Med. Imaging 32(6), 1132–1145 (2013)
Shetty, G.N., Slavakis, K., Bose, A., Nakarmi, U., Scutari, G.: Bi-linear modeling of data manifolds for dynamic-MRI recovery. IEEE Trans. Med. Imaging 39(3), 688–702 (2019)
Venkatakrishnan, S.V., Bouman, C.A., Wohlberg, B.: Plug-and-play priors for model based reconstruction. In: IEEE Global Conference on Signal and Information Processing, pp. 945–948 (2013)
Kamilov, U.S., Mansour, H., Wohlberg, B.: A plug-and-play priors approach for solving nonlinear imaging inverse problems. IEEE Signal Process. Lett. 24(12), 1872–1876 (2017)
Eksioglu, E.M., Tanc, A.K.: Denoising AMP for MRI reconstruction: BM3D-AMP-MRI. SIAM J. Imaging Sci. 11(3), 2090–2109 (2018)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Song, C., Yoon, S., Pavlovic, V.: Fast admm algorithm for distributed optimization with adaptive penalty. arXiv preprint arXiv:1506.08928 (2015)
Salim, A., Korba, A. , Luise, G.: The wasserstein proximal gradient algorithm (2020). https://arxiv.org/abs/2002.03035v3
Coll, B.: A review of image denoising algorithms, with a new one. Multiscale Model Simul. 4(2), 490–530 (2005)
Dabov, K., Foi, A., Katkovnik, V., Karen, E.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)
Huang, J., Zhang, S., Li, H., Metaxas, D.: Composite splitting algorithms for convex optimization. Comput. Vis. Image Underst. 115(12), 1610–1622 (2011)
Ahmad, R., Bouman, C.A., Buzzard, G.T., Chan, S., Schniter, P.: Plug-and-play methods for magnetic resonance imaging: using denoisers for image recovery. IEEE Signal Process. Mag. 37(1), 105–116 (2020)
Zhu, Q.Y., Wang, W., Cheng, J., Peng, X.: Incorporating reference guided priors into calibrationless parallel imaging reconstruction. Magn. Reson. Imaging 57, 347–358 (2019)
Lustig, M., Donoho, D.L., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013)
Ahmad, R., Hui, X., Giri, S., Yu, D., Simonetti, O.P.: Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI. Magn. Reson. Med. 74(5), 1266–1278 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, Q., Liang, D. (2021). Using Spatio-Temporal Correlation Based Hybrid Plug-and-Play Priors (SEABUS) for Accelerated Dynamic Cardiac Cine MRI. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-87589-3_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87588-6
Online ISBN: 978-3-030-87589-3
eBook Packages: Computer ScienceComputer Science (R0)