Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Spatio-Temporal Correlation Based Hybrid Plug-and-Play Priors (SEABUS) for Accelerated Dynamic Cardiac Cine MRI

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12966))

Included in the following conference series:

Abstract

The plug-and-play prior (P\(^{3}\)) is known as denoising prior which has been successfully applied to various imaging problems. In this work for accelerated dynamic cardiac cine magnetic resonance imaging (Dcc-MRI), we introduce a Spatio-tEmporal correlAtion based hyBrid plUg-and-play priorS (SEABUS) integrating local P\(^{3}\) and nonlocal P\(^{3}\), which further help both suppress aliasing artifacts and capture dynamic features. Specifically, the local P\(^{3}\) enforces the pixel-wise edge-orientation consistency by reference frame guided multi-scale orientation projection (MSOP) in a subset of few adjacent frames. The nonlocal P\(^{3}\) constrains the cube-wise anatomic-structure similarity by cube matching and 4D filtering (CM4D) in all frames. By composite splitting algorithm (CSA), the SEABUS is coupled into fast iterative shrinkage-thresholding algorithm (FISTA) and then a new Dcc-MRI approach that is named as SEABUS-FCSA is proposed. The experimental results on the in-vivo cardiac MR datasets demonstrated the efficiency and potential of the proposed SEABUS-FCSA approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  2. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  3. Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices (2009). https://arxiv.org/abs/0905.0233

  4. Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Article  MathSciNet  Google Scholar 

  5. Angshul, M., Ward, R.K., Tyseer, A.: Compressed sensing based real-time dynamic MRI reconstruction. IEEE Trans. Med. Imaging 31(12), 2253–2266 (2012)

    Article  Google Scholar 

  6. Chen, C., Li, Y.Q., Axel, L., Huang, J.Z.: Real time dynamic MRI by exploiting spatial and temporal sparsity. Magn. Reson. Imaging 34(4), 473–482 (2016)

    Article  Google Scholar 

  7. Fan, L.A., Dl, A., Xj, A., Wq, A., Qi, X.B., Bs, A.: Dynamic cardiac MRI reconstruction using motion aligned locally low rank tensor (mallrt) - sciencedirect. Magn. Reson. Imaging 66, 104–115 (2020)

    Article  Google Scholar 

  8. Otazo, R., Candès, E., Sodickson, D.K.: “Low” rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. In: Magnetic Resonance in Medicine, vol. 73, no. 3, pp. 1125–1136 (2015)

    Google Scholar 

  9. Miao, X., et al.: Accelerated cardiac cine MRI using locally low rank and finite difference constraints. Magn. Reson. Imaging 34(6), 707–714 (2016)

    Article  Google Scholar 

  10. Ravishankar, S., Moore, B.E., Nadakuditi, R.R., Fessler, J.A.: Low-rank and adaptive sparse signal (LASSI) models for highly accelerated dynamic imaging. IEEE Trans. Med. Imaging 36(5), 1116–1128 (2017)

    Article  Google Scholar 

  11. Liu, Y., Liu, T., Liu, J., Zhu, C.: Smooth robust tensor principal component analysis for compressed sensing of dynamic MRI. Pattern Recogn. 102(6), 107252 (2020)

    Article  Google Scholar 

  12. Lingala, S.G., Jacob, M.: Blind compressive sensing dynamic MRI. IEEE Trans. Med. Imaging 32(6), 1132–1145 (2013)

    Article  Google Scholar 

  13. Shetty, G.N., Slavakis, K., Bose, A., Nakarmi, U., Scutari, G.: Bi-linear modeling of data manifolds for dynamic-MRI recovery. IEEE Trans. Med. Imaging 39(3), 688–702 (2019)

    Article  Google Scholar 

  14. Venkatakrishnan, S.V., Bouman, C.A., Wohlberg, B.: Plug-and-play priors for model based reconstruction. In: IEEE Global Conference on Signal and Information Processing, pp. 945–948 (2013)

    Google Scholar 

  15. Kamilov, U.S., Mansour, H., Wohlberg, B.: A plug-and-play priors approach for solving nonlinear imaging inverse problems. IEEE Signal Process. Lett. 24(12), 1872–1876 (2017)

    Article  Google Scholar 

  16. Eksioglu, E.M., Tanc, A.K.: Denoising AMP for MRI reconstruction: BM3D-AMP-MRI. SIAM J. Imaging Sci. 11(3), 2090–2109 (2018)

    Article  MathSciNet  Google Scholar 

  17. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  18. Song, C., Yoon, S., Pavlovic, V.: Fast admm algorithm for distributed optimization with adaptive penalty. arXiv preprint arXiv:1506.08928 (2015)

  19. Salim, A., Korba, A. , Luise, G.: The wasserstein proximal gradient algorithm (2020). https://arxiv.org/abs/2002.03035v3

  20. Coll, B.: A review of image denoising algorithms, with a new one. Multiscale Model Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  21. Dabov, K., Foi, A., Katkovnik, V., Karen, E.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  22. Huang, J., Zhang, S., Li, H., Metaxas, D.: Composite splitting algorithms for convex optimization. Comput. Vis. Image Underst. 115(12), 1610–1622 (2011)

    Article  Google Scholar 

  23. Ahmad, R., Bouman, C.A., Buzzard, G.T., Chan, S., Schniter, P.: Plug-and-play methods for magnetic resonance imaging: using denoisers for image recovery. IEEE Signal Process. Mag. 37(1), 105–116 (2020)

    Article  Google Scholar 

  24. Zhu, Q.Y., Wang, W., Cheng, J., Peng, X.: Incorporating reference guided priors into calibrationless parallel imaging reconstruction. Magn. Reson. Imaging 57, 347–358 (2019)

    Article  Google Scholar 

  25. Lustig, M., Donoho, D.L., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  26. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013)

    Article  MathSciNet  Google Scholar 

  27. Ahmad, R., Hui, X., Giri, S., Yu, D., Simonetti, O.P.: Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI. Magn. Reson. Med. 74(5), 1266–1278 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Q., Liang, D. (2021). Using Spatio-Temporal Correlation Based Hybrid Plug-and-Play Priors (SEABUS) for Accelerated Dynamic Cardiac Cine MRI. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics