Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Reinforcement Learning for L3 Slice Localization in Sarcopenia Assessment

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Abstract

Sarcopenia is a medical condition characterized by a reduction in muscle mass and function. A quantitative diagnosis technique consists of localizing the CT slice passing through the middle of the third lumbar area (L3) and segmenting muscles at this level. In this paper, we propose a deep reinforcement learning method for accurate localization of the L3 CT slice. Our method trains a reinforcement learning agent by incentivizing it to discover the right position. Specifically, a Deep Q-Network is trained to find the best policy to follow for this problem. Visualizing the training process shows that the agent mimics the scrolling of an experienced radiologist. Extensive experiments against other state-of-the-art deep learning based methods for L3 localization prove the superiority of our technique which performs well even with a limited amount of data and annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://verse2020.grand-challenge.org/.

References

  1. Alansary, A., et al.: Automatic view planning with multi-scale deep reinforcement learning agents. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 277–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_32

    Chapter  Google Scholar 

  2. Apazidis, A., Ricart, P.A., Diefenbach, C.M., Spivak, J.M.: The prevalence of transitional vertebrae in the lumbar spine. Spine J. 11(9), 858–862 (2011)

    Article  Google Scholar 

  3. Belharbi, S., et al.: Spotting l3 slice in ct scans using deep convolutional network and transfer learning. Comput. Biol. Med. 87, 95–103 (2017)

    Article  Google Scholar 

  4. Blanc-Durand, P., et al.: Abdominal musculature segmentation and surface prediction from ct using deep learning for sarcopenia assessment. Diagnost. Intervent. Imaging 101(12), 789–794 (2020)

    Article  Google Scholar 

  5. Bozzetti, F.: Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann. Oncol. 28(9), 2107–2118 (2017)

    Google Scholar 

  6. Castiglione, J., Somasundaram, E., Gilligan, L.A., Trout, A.T., Brady, S.: Automated segmentation of abdominal skeletal muscle in pediatric ct scans using deep learning. Radiol. Artif. Intell. 3(2), e200130 (2021)

    Google Scholar 

  7. Cruz-Jentoft, A.J., et al.: Sarcopenia: revised european consensus on definition and diagnosis. Age Ageing 48(1), 16–31 (2019)

    Article  Google Scholar 

  8. Derstine, B.A., et al.: Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J. Nutr. Health Aging 21(10), 180–185 (2017)

    Google Scholar 

  9. Du, Y., Karvellas, C.J., Baracos, V., Williams, D.C., Khadaroo, R.G.: Sarcopenia is a predictor of outcomes in very elderly patients undergoing emergency surgery. Surgery 156(3), 521–527 (2014)

    Article  Google Scholar 

  10. Ghesu, F.C., Georgescu, B., Grbic, S., Maier, A., Hornegger, J., Comaniciu, D.: Towards intelligent robust detection of anatomical structures in incomplete volumetric data. Med. Image Anal. 48, 203–213 (2018)

    Google Scholar 

  11. Gilligan, L.A., Towbin, A.J., Dillman, J.R., Somasundaram, E., Trout, A.T.: Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatric Radiol. 50(4), 455–464 (2020)

    Article  Google Scholar 

  12. Grill, J.B., et al.: Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)

  13. Kanavati, F., Islam, S., Aboagye, E.O., Rockall, A.: Automatic l3 slice detection in 3D ct images using fully-convolutional networks (2018)

    Google Scholar 

  14. Lee, J., et al.: Skeletal muscle loss is an imaging biomarker of outcome after definitive chemoradiotherapy for locally advanced cervical cancer. Clin. Cancer Res. 24(20), 5028–5036 (2018)

    Article  Google Scholar 

  15. Lian, J., Levine, N., Cho, W.: A review of lumbosacral transitional vertebrae and associated vertebral numeration. Eur. Spine J. 27(5), 995–1004 (2018)

    Article  Google Scholar 

  16. Maicas, G., Carneiro, G., Bradley, A.P., Nascimento, J.C., Reid, I.: Deep reinforcement learning for active breast lesion detection from DCE-MRI. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 665–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_76

    Chapter  Google Scholar 

  17. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  19. Navarro, F., Sekuboyina, A., Waldmannstetter, D., Peeken, J.C., Combs, S.E., Menze, B.H.: Deep reinforcement learning for organ localization in ct. In: Medical Imaging with Deep Learning, pp. 544–554. PMLR (2020)

    Google Scholar 

  20. Nishioka, N., et al.: Association of sarcopenia with and efficacy of anti-pd-1/pd-l1 therapy in non-small-cell lung cancer. J. Clin. Med. 8(4), 450 (2019)

    Google Scholar 

  21. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

    Google Scholar 

  22. Payer, C., Štern, D., Bischof, H., Urschler, M.: Coarse to fine vertebrae localization and segmentation with spatialconfiguration-net and u-net. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, vol. 5, pp. 124–133 (2020). https://doi.org/10.5220/0008975201240133

  23. Santilli, V., Bernetti, A., Mangone, M., Paoloni, M.: Clinical definition of sarcopenia. Clin. Miner. Bone Metab. 11(3), 177 (2014)

    Google Scholar 

  24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  25. Suzani, A., Seitel, A., Liu, Y., Fels, S., Rohling, R.N., Abolmaesumi, Purang: Fast automatic vertebrae detection and localization in pathological CT scans - a deep learning approach. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 678–686. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_81

    Chapter  Google Scholar 

  26. Tarbouriech, J., Garcelon, E., Valko, M., Pirotta, M., Lazaric, A.: No-regret exploration in goal-oriented reinforcement learning. In: International Conference on Machine Learning, pp. 9428–9437. PMLR (2020)

    Google Scholar 

  27. Vlontzos, A., Alansary, A., Kamnitsas, K., Rueckert, D., Kainz, B.: Multiple landmark detection using multi-agent reinforcement learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 262–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_29

    Chapter  Google Scholar 

  28. Wang, Z., de Freitas, N., Lanctot, M.: Dueling network architectures for deep reinforcement learning. CoRR abs/1511.06581 (2015). http://arxiv.org/abs/1511.06581

  29. Zopfs, D., et al.: Single-slice ct measurements allow for accurate assessment of sarcopenia and body composition. Eur. Radiol. 30, 1701–1708 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Othmane Laousy , Guillaume Chassagnon , Edouard Oyallon , Nikos Paragios , Marie-Pierre Revel or Maria Vakalopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laousy, O., Chassagnon, G., Oyallon, E., Paragios, N., Revel, MP., Vakalopoulou, M. (2021). Deep Reinforcement Learning for L3 Slice Localization in Sarcopenia Assessment. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics