Abstract
Sarcopenia is a medical condition characterized by a reduction in muscle mass and function. A quantitative diagnosis technique consists of localizing the CT slice passing through the middle of the third lumbar area (L3) and segmenting muscles at this level. In this paper, we propose a deep reinforcement learning method for accurate localization of the L3 CT slice. Our method trains a reinforcement learning agent by incentivizing it to discover the right position. Specifically, a Deep Q-Network is trained to find the best policy to follow for this problem. Visualizing the training process shows that the agent mimics the scrolling of an experienced radiologist. Extensive experiments against other state-of-the-art deep learning based methods for L3 localization prove the superiority of our technique which performs well even with a limited amount of data and annotations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alansary, A., et al.: Automatic view planning with multi-scale deep reinforcement learning agents. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 277–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_32
Apazidis, A., Ricart, P.A., Diefenbach, C.M., Spivak, J.M.: The prevalence of transitional vertebrae in the lumbar spine. Spine J. 11(9), 858–862 (2011)
Belharbi, S., et al.: Spotting l3 slice in ct scans using deep convolutional network and transfer learning. Comput. Biol. Med. 87, 95–103 (2017)
Blanc-Durand, P., et al.: Abdominal musculature segmentation and surface prediction from ct using deep learning for sarcopenia assessment. Diagnost. Intervent. Imaging 101(12), 789–794 (2020)
Bozzetti, F.: Forcing the vicious circle: sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann. Oncol. 28(9), 2107–2118 (2017)
Castiglione, J., Somasundaram, E., Gilligan, L.A., Trout, A.T., Brady, S.: Automated segmentation of abdominal skeletal muscle in pediatric ct scans using deep learning. Radiol. Artif. Intell. 3(2), e200130 (2021)
Cruz-Jentoft, A.J., et al.: Sarcopenia: revised european consensus on definition and diagnosis. Age Ageing 48(1), 16–31 (2019)
Derstine, B.A., et al.: Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J. Nutr. Health Aging 21(10), 180–185 (2017)
Du, Y., Karvellas, C.J., Baracos, V., Williams, D.C., Khadaroo, R.G.: Sarcopenia is a predictor of outcomes in very elderly patients undergoing emergency surgery. Surgery 156(3), 521–527 (2014)
Ghesu, F.C., Georgescu, B., Grbic, S., Maier, A., Hornegger, J., Comaniciu, D.: Towards intelligent robust detection of anatomical structures in incomplete volumetric data. Med. Image Anal. 48, 203–213 (2018)
Gilligan, L.A., Towbin, A.J., Dillman, J.R., Somasundaram, E., Trout, A.T.: Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatric Radiol. 50(4), 455–464 (2020)
Grill, J.B., et al.: Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)
Kanavati, F., Islam, S., Aboagye, E.O., Rockall, A.: Automatic l3 slice detection in 3D ct images using fully-convolutional networks (2018)
Lee, J., et al.: Skeletal muscle loss is an imaging biomarker of outcome after definitive chemoradiotherapy for locally advanced cervical cancer. Clin. Cancer Res. 24(20), 5028–5036 (2018)
Lian, J., Levine, N., Cho, W.: A review of lumbosacral transitional vertebrae and associated vertebral numeration. Eur. Spine J. 27(5), 995–1004 (2018)
Maicas, G., Carneiro, G., Bradley, A.P., Nascimento, J.C., Reid, I.: Deep reinforcement learning for active breast lesion detection from DCE-MRI. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 665–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_76
Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Navarro, F., Sekuboyina, A., Waldmannstetter, D., Peeken, J.C., Combs, S.E., Menze, B.H.: Deep reinforcement learning for organ localization in ct. In: Medical Imaging with Deep Learning, pp. 544–554. PMLR (2020)
Nishioka, N., et al.: Association of sarcopenia with and efficacy of anti-pd-1/pd-l1 therapy in non-small-cell lung cancer. J. Clin. Med. 8(4), 450 (2019)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)
Payer, C., Štern, D., Bischof, H., Urschler, M.: Coarse to fine vertebrae localization and segmentation with spatialconfiguration-net and u-net. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, vol. 5, pp. 124–133 (2020). https://doi.org/10.5220/0008975201240133
Santilli, V., Bernetti, A., Mangone, M., Paoloni, M.: Clinical definition of sarcopenia. Clin. Miner. Bone Metab. 11(3), 177 (2014)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT Press, Cambridge (2018)
Suzani, A., Seitel, A., Liu, Y., Fels, S., Rohling, R.N., Abolmaesumi, Purang: Fast automatic vertebrae detection and localization in pathological CT scans - a deep learning approach. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 678–686. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_81
Tarbouriech, J., Garcelon, E., Valko, M., Pirotta, M., Lazaric, A.: No-regret exploration in goal-oriented reinforcement learning. In: International Conference on Machine Learning, pp. 9428–9437. PMLR (2020)
Vlontzos, A., Alansary, A., Kamnitsas, K., Rueckert, D., Kainz, B.: Multiple landmark detection using multi-agent reinforcement learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 262–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_29
Wang, Z., de Freitas, N., Lanctot, M.: Dueling network architectures for deep reinforcement learning. CoRR abs/1511.06581 (2015). http://arxiv.org/abs/1511.06581
Zopfs, D., et al.: Single-slice ct measurements allow for accurate assessment of sarcopenia and body composition. Eur. Radiol. 30, 1701–1708 (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Laousy, O., Chassagnon, G., Oyallon, E., Paragios, N., Revel, MP., Vakalopoulou, M. (2021). Deep Reinforcement Learning for L3 Slice Localization in Sarcopenia Assessment. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-87589-3_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87588-6
Online ISBN: 978-3-030-87589-3
eBook Packages: Computer ScienceComputer Science (R0)