Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Grayscale Image Steganography via Generative Adversarial Network

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12999))

Included in the following conference series:

Abstract

Steganography is an effective technique in the field of information hiding that typically involves embedding secret information into an image to resist steganalysis detection. In recent years, several works on image steganography based on deep learning have been presented, but these works still have issues with steganographic image and revealed image quality, invisibility, and security. In this paper, a novel grayscale image steganography via generative adversarial network is proposed. To boost the invisibility of the model, we construct an encoding network, which is comprised of a secret image feature extraction module and an integration module that conceals a grayscale secret image into another color cover image of the same size. Moreover, considering the security of the model, adversarial training between the encoding-decoding network and the steganalyzer is used. As compared to state-of-the-art steganography models, experimental results show that our proposed steganography scheme not only has higher peak signal-to-noise ratio and structural similarity index but also better invisibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1

    Article  Google Scholar 

  2. Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE (2012)

    Google Scholar 

  3. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  4. Volkhonskiy, D., Borisenko, B., Burnaev, E.: Generative adversarial networks for image steganography (2016)

    Google Scholar 

  5. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Bing, X., Bengio, Y.: Generative adversarial nets. MIT Press (2014)

    Google Scholar 

  6. Baluja, S.: Hiding images in plain sight: deep steganography. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 2066–2076 (2017)

    Google Scholar 

  7. Rahim, R., Nadeem, S., et al.: End-to-end trained CNN encoder-decoder networks for image steganography. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  8. Zhang, R., Dong, S., Liu, J.: Invisible steganography via generative adversarial networks. Multimedia Tools Appl. 78(7), 8559–8575 (2018). https://doi.org/10.1007/s11042-018-6951-z

    Article  Google Scholar 

  9. Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks for steganalysis. IEEE Sig. Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  10. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  11. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography based on generative adversarial networks. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds.) PCM 2017. LNCS, vol. 10735, pp. 534–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77380-3_51

    Chapter  Google Scholar 

  12. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  13. Tang, W., Tan, S., Li, B., Huang, J.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Sig. Process. Lett. 24(10), 1547–1551 (2017)

    Article  Google Scholar 

  14. Hayes, J., Danezis, G.: Generating steganographic images via adversarial training. arXiv preprint arXiv:1703.00371 (2017)

  15. Chen, B., Wang, J., Chen, Y., Jin, Z., Shim, H.J., Shi, Y.Q.: High-capacity robust image steganography via adversarial network. KSII Trans. Internet Inf. Syst. 14(1), 366 (2020)

    Google Scholar 

  16. Li, Q., et al.: A novel grayscale image steganography scheme based on chaos encryption and generative adversarial networks. IEEE Access 8, 168166–168176 (2020)

    Article  Google Scholar 

  17. Qin, S., Tan, Z., Zhang, B., Zhou, F.: Evolutionary-based image encryption with DNA coding and chaotic systems. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 592–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60029-7_53

    Chapter  Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  20. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  21. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  22. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  23. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13(4), 600–612 (2004)

    Google Scholar 

  25. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gan, Z., Zhong, Y. (2021). A Novel Grayscale Image Steganography via Generative Adversarial Network. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds) Web Information Systems and Applications. WISA 2021. Lecture Notes in Computer Science(), vol 12999. Springer, Cham. https://doi.org/10.1007/978-3-030-87571-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87571-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87570-1

  • Online ISBN: 978-3-030-87571-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics