Abstract
Steganography is an effective technique in the field of information hiding that typically involves embedding secret information into an image to resist steganalysis detection. In recent years, several works on image steganography based on deep learning have been presented, but these works still have issues with steganographic image and revealed image quality, invisibility, and security. In this paper, a novel grayscale image steganography via generative adversarial network is proposed. To boost the invisibility of the model, we construct an encoding network, which is comprised of a secret image feature extraction module and an integration module that conceals a grayscale secret image into another color cover image of the same size. Moreover, considering the security of the model, adversarial training between the encoding-decoding network and the steganalyzer is used. As compared to state-of-the-art steganography models, experimental results show that our proposed steganography scheme not only has higher peak signal-to-noise ratio and structural similarity index but also better invisibility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014(1), 1–13 (2014). https://doi.org/10.1186/1687-417X-2014-1
Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 234–239. IEEE (2012)
Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13
Volkhonskiy, D., Borisenko, B., Burnaev, E.: Generative adversarial networks for image steganography (2016)
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Bing, X., Bengio, Y.: Generative adversarial nets. MIT Press (2014)
Baluja, S.: Hiding images in plain sight: deep steganography. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 2066–2076 (2017)
Rahim, R., Nadeem, S., et al.: End-to-end trained CNN encoder-decoder networks for image steganography. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Zhang, R., Dong, S., Liu, J.: Invisible steganography via generative adversarial networks. Multimedia Tools Appl. 78(7), 8559–8575 (2018). https://doi.org/10.1007/s11042-018-6951-z
Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks for steganalysis. IEEE Sig. Process. Lett. 23(5), 708–712 (2016)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography based on generative adversarial networks. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds.) PCM 2017. LNCS, vol. 10735, pp. 534–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77380-3_51
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Tang, W., Tan, S., Li, B., Huang, J.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Sig. Process. Lett. 24(10), 1547–1551 (2017)
Hayes, J., Danezis, G.: Generating steganographic images via adversarial training. arXiv preprint arXiv:1703.00371 (2017)
Chen, B., Wang, J., Chen, Y., Jin, Z., Shim, H.J., Shi, Y.Q.: High-capacity robust image steganography via adversarial network. KSII Trans. Internet Inf. Syst. 14(1), 366 (2020)
Li, Q., et al.: A novel grayscale image steganography scheme based on chaos encryption and generative adversarial networks. IEEE Access 8, 168166–168176 (2020)
Qin, S., Tan, Z., Zhang, B., Zhou, F.: Evolutionary-based image encryption with DNA coding and chaotic systems. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 592–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60029-7_53
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13(4), 600–612 (2004)
Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gan, Z., Zhong, Y. (2021). A Novel Grayscale Image Steganography via Generative Adversarial Network. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds) Web Information Systems and Applications. WISA 2021. Lecture Notes in Computer Science(), vol 12999. Springer, Cham. https://doi.org/10.1007/978-3-030-87571-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-87571-8_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87570-1
Online ISBN: 978-3-030-87571-8
eBook Packages: Computer ScienceComputer Science (R0)