Nothing Special   »   [go: up one dir, main page]

Skip to main content

Differentially Private Linear Regression Analysis via Truncating Technique

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12999))

Included in the following conference series:

Abstract

This paper discusses how to study the linear regression model accurately while guaranteeing \(\epsilon \)-differential privacy. The parameters involved in linear regression are sensitive to one single record in database. As a result, a large scale of noise has to be added into the parameters to protect the records in database, which leads to inaccurate results. To improve the accuracy of published results, the existing works enforce \(\epsilon \)-differential privacy by perturbing the coefficients in the objective function(loss function) of one optimization problem, which is constructed to derive parameters of linear regression, rather than adding noise to the parameters directly. And the scale of noise generated in the above technique is proportional to the square of dimensionality. Obviously, if the dimensionality is high, the scale of noise will be very large, i.e., curse of dimensionality. To settle this issue, this paper firstly studies a truncating length in a differential private way, where the length limits the maximal influence of one record on the coefficients of objective function. And then the noisy truncating coefficients are published with the truncating length limitation. Finally, the parameters involved in linear regression can be derived based on the objective function with noisy coefficients. The experiments on real datasets validate the effectiveness of our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chamikara, M.A.P., Bertók, P., Khalil, I., Liu, D., Camtepe, S.: Privacy preserving face recognition utilizing differential privacy. CoRR abs/2005.10486 (2020)

    Google Scholar 

  2. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: Proceedings of NIPS, Vancouver, pp. 289–296. Curran Associates, Inc. (2008)

    Google Scholar 

  3. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12, 1069–1109 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Cheng, X., Tang, P., Su, S., Chen, R., Wu, Z., Zhu, B.: Multi-party high-dimensional data publishing under differential privacy. IEEE Trans. Knowl. Data Eng. 32(8), 1557–1571 (2020). https://doi.org/10.1109/TKDE.2019.2906610

    Article  Google Scholar 

  5. Dandekar, A., Basu, D., Bressan, S.: Differential privacy for regularised linear regression. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 483–491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_44

    Chapter  Google Scholar 

  6. Day, W., Li, N.: Differentially private publishing of high-dimensional data using sensitivity control. In: Proc of Asia’CCS, Singapore, pp. 451–462. ACM (2015). https://doi.org/10.1145/2714576.2714621

  7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  8. Ghane, S., Kulik, L., Ramamohanarao, K.: TGM: a generative mechanism for publishing trajectories with differential privacy. IEEE Internet Things J. 7(4), 2611–2621 (2020). https://doi.org/10.1109/JIOT.2019.2943719

    Article  Google Scholar 

  9. Lei, J.: Differentially private m-estimators. In: Proceedings of NIPS, Granada, pp. 361–369 (2011)

    Google Scholar 

  10. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of SIGMOD, Providence, pp. 19–30. ACM (2009). https://doi.org/10.1145/1559845.1559850

  11. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of FOCS, Providence, pp. 94–103. IEEE Computer Society (2007). https://doi.org/10.1109/FOCS.2007.41

  12. Murphy, K.P.: Machine Learning - A Probabilistic Perspective. Adaptive Computation and Machine Learning Series. MIT Press, Cambridge (2012)

    Google Scholar 

  13. Rodney, A.: Using linear regression analysis and defense in depth to protect networks during the global corona pandemic. J. Inf. Secur. 11, 261–291 (2020)

    Google Scholar 

  14. Smith, A.D.: Privacy-preserving statistical estimation with optimal convergence rates. In: Proceedings of STOC, San Jose, pp. 813–822. ACM (2011). https://doi.org/10.1145/1993636.1993743

  15. Lafif Tej, M., Holban, S.: Determining optimal multi-layer perceptron structure using linear regression. In: Abramowicz, W., Corchuelo, R. (eds.) BIS 2019. LNBIP, vol. 353, pp. 232–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20485-3_18

    Chapter  Google Scholar 

  16. Wang, D., Xu, J.: On sparse linear regression in the local differential privacy model. In: Proceedings of ICML, Long Beach, vol. 97, pp. 6628–6637. PMLR (2019)

    Google Scholar 

  17. Wang, D., Xu, J.: On sparse linear regression in the local differential privacy model. IEEE Trans. Inf. Theory 67(2), 1182–1200 (2021). https://doi.org/10.1109/TIT.2020.3040406

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Q., Li, Z., Zou, Q., Zhao, L., Wang, S.: Deep domain adaptation with differential privacy. IEEE Trans. Inf. Forensics Secur. 15, 3093–3106 (2020). https://doi.org/10.1109/TIFS.2020.2983254

    Article  Google Scholar 

  19. Wang, Y.: Per-instance differential privacy and the adaptivity of posterior sampling in linear and ridge regression. CoRR abs/1707.07708 (2017)

    Google Scholar 

  20. Wang, Y., Si, C., Wu, X.: Regression model fitting under differential privacy and model inversion attack. In: Proceedings of IJCAI, Buenos Aires, pp. 1003–1009. AAAI Press (2015)

    Google Scholar 

  21. Wu, N., Farokhi, F., Smith, D.B., Kâafar, M.A.: The value of collaboration in convex machine learning with differential privacy. In: Proceedings of SP, San Francisco, pp. 304–317. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00025

  22. Wu, X., Li, F., Kumar, A., Chaudhuri, K., Jha, S., Naughton, J.F.: Bolt-on differential privacy for scalable stochastic gradient descent-based analytics. In: Proceedings of SIGMOD, Chicago, pp. 1307–1322. ACM (2017). https://doi.org/10.1145/3035918.3064047

  23. Xu, J., Zhang, W., Wang, F.: A(dp)\({}^{\text{2}}\)sgd: asynchronous decentralized parallel stochastic gradient descent with differential privacy. CoRR abs/2008.09246 (2020)

    Google Scholar 

  24. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism: Regression analysis under differential privacy. Proc. VLDB Endow. 5(11), 1364–1375 (2012). https://doi.org/10.14778/2350229.2350253

  25. Zhao, B.Z.H., Kâafar, M.A., Kourtellis, N.: Not one but many tradeoffs: privacy vs. utility in differentially private machine learning. CoRR abs/2008.08807 (2020)

    Google Scholar 

  26. Zheng, H., Hu, H., Han, Z.: Preserving user privacy for machine learning: local differential privacy or federated machine learning. IEEE Intell. Syst. 35(4), 5–14 (2020). https://doi.org/10.1109/MIS.2020.3010335

    Article  Google Scholar 

  27. Zou, Y., Bao, X., Xu, C., Ni, W.: Top-k frequent itemsets publication of uncertain data based on differential privacy. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 547–558. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60029-7_49

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 61902365 and Grant 61902366, in part by the China Postdoctoral Science Foundation under Grant 2019M652473, Grant 2019M652474 and Grant 2020T130623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. et al. (2021). Differentially Private Linear Regression Analysis via Truncating Technique. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds) Web Information Systems and Applications. WISA 2021. Lecture Notes in Computer Science(), vol 12999. Springer, Cham. https://doi.org/10.1007/978-3-030-87571-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87571-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87570-1

  • Online ISBN: 978-3-030-87571-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics