Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Boosting Channel Attention for Real Image Denoising: Sub-band Pyramid Attention

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Abstract

Convolutional layers treat the Channel features equally with no prioritization. When Convolutional Neural Networks (CNNs) are used for image denoising in real-world applications with unknown noise distributions, particularly structured noise with learnable patterns, modeling informative features can substantially boost the denoising performance. Channel attentions in real-world image denoising tasks exploit dependencies between the feature channels; therefore, they can be viewed as a frequency-domain filtering mechanism. Existing channel attention modules typically use global statics as descriptors to learn inter-channel correlations. These methods deem inefficient in learning representative coefficients for re-scaling the channels at frequency level. This paper proposes a novel Sub-band Pyramid Attention (SPA) model based on wavelet transform to recalibrate the extracted features’ frequency components in a more fine-grained fashion. Our method, in one sense, integrates the conventional frequency-domain filtering methods with deep learning architectures to achieve higher performance records. Experimental results show that ANNs equipped with the proposed attention module substantially improves upon the benchmark naive channel attention blocks. More specifically, we obtained a 3.97 dB gain compared to the best traditional algorithm, BM3D and a 1.87 dB to 0.18 dB gain over the DL-based methods in terms of denoising performance. Furthermore, our results show how the pyramid level affects the performance of the SPA blocks and exhibits favorable generalization capability for the SPA blocks.

This material is based upon work supported by the National Science Foundation under Grant 2008784.

H. Li and H. Wu—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Model size was calculated by torchsummary package (https://github.com/sksq96/pytorch-summary).

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2018)

    Google Scholar 

  2. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  3. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  4. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3155–3164 (2019)

    Google Scholar 

  5. Anwar, S., Barnes, N.: Densely residual Laplacian super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  6. Anwar, S., Phuoc Huynh, C., Porikli, F.: Identity enhanced residual image denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 520–521 (2020)

    Google Scholar 

  7. Bao, L., Yang, Z., Wang, S., Bai, D., Lee, J.: Real image denoising based on multi-scale residual dense block and cascaded U-Net with block-connection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 448–449 (2020)

    Google Scholar 

  8. Boie, R.A., Cox, I.J.: An analysis of camera noise. IEEE Trans. Pattern Anal. Mach. Intell. 6, 671–674 (1992)

    Article  Google Scholar 

  9. Boyat, A.K., Joshi, B.K.: A review paper: noise models in digital image processing. arXiv preprint arXiv:1505.03489 (2015)

  10. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  11. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392–2399. IEEE (2012)

    Google Scholar 

  12. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  13. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  14. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  15. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  Google Scholar 

  16. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  17. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  19. Jain, U.: Characterization of CMOS Image Sensor. Ph.D. thesis, MS Thesis, Delft University of Technology (2016)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Liu, X., Tanaka, M., Okutomi, M.: Practical signal-dependent noise parameter estimation from a single noisy image. IEEE Trans. Image Process. 23(10), 4361–4371 (2014)

    Article  MathSciNet  Google Scholar 

  22. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810 (2016)

    Google Scholar 

  23. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings 8th IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  25. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  26. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595 (2017)

    Google Scholar 

  27. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205 (2009)

    Article  Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Xu, J., Zhang, L., Zhang, D.: A trilateral weighted sparse coding scheme for real-world image denoising. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 21–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_2

    Chapter  Google Scholar 

  30. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1096–1104 (2017)

    Google Scholar 

  31. Zamir, S.W., et al.: CycleISP: real image restoration via improved data synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2696–2705 (2020)

    Google Scholar 

  32. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3929–3938 (2017)

    Google Scholar 

  34. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  36. Zhao, Y., Jiang, Z., Men, A., Ju, G.: Pyramid real image denoising network. In: 2019 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Razi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Wu, H., Chen, X., Wang, H., Razi, A. (2021). Towards Boosting Channel Attention for Real Image Denoising: Sub-band Pyramid Attention. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics