Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Data from multi-modality provide complementary information in clinical prediction, but missing data in clinical cohorts limits the number of subjects in multi-modal learning context. Multi-modal missing imputation is challenging with existing methods when 1) the missing data span across heterogeneous modalities (e.g., image vs. non-image); or 2) one modality is largely missing. In this paper, we address imputation of missing data by modeling the joint distribution of multi-modal data. Motivated by partial bidirectional generative adversarial net (PBiGAN), we propose a new Conditional PBiGAN (C-PBiGAN) method that imputes one modality combining the conditional knowledge from another modality. Specifically, C-PBiGAN introduces a conditional latent space in a missing imputation framework that jointly encodes the available multi-modal data, along with a class regularization loss on imputed data to recover discriminative information. To our knowledge, it is the first generative adversarial model that addresses multi-modal missing imputation by modeling the joint distribution of image and non-image data. We validate our model with both the national lung screening trial (NLST) dataset and an external clinical validation cohort. The proposed C-PBiGAN achieves significant improvements in lung cancer risk estimation compared with representative imputation methods (e.g., AUC values increase in both NLST (+2.9%) and in-house dataset (+4.3%) compared with PBiGAN, p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019)

    Article  Google Scholar 

  2. Aberle, D.R., et al.: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011)

    Article  Google Scholar 

  3. National Lung Screening Trial Research Team, et al.: The national lung screening trial: overview and study design. Radiology 258, 243–253 (2011)

    Google Scholar 

  4. Huang, P., et al.: Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. Lancet Digit. Heal. 1, e353–e362 (2019)

    Article  Google Scholar 

  5. Tammemägi, M.C., et al.: Selection criteria for lung-cancer screening. N. Engl. J. Med. 368, 728–736 (2013)

    Article  Google Scholar 

  6. Swensen, S.J.: The probability of malignancy in solitary pulmonary nodules. Arch. Intern. Med. 157, 849 (1997)

    Google Scholar 

  7. McWilliams, A., et al.: Probability of cancer in pulmonary nodules detected on first screening CT. N. Engl. J. Med. 369, 910–919 (2013)

    Article  Google Scholar 

  8. Liu, L., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Multi-task deep model with margin ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 39, 718–728 (2020)

    Article  Google Scholar 

  9. Liao, F., Liang, M., Li, Z., Hu, X., Song, S.: Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network. IEEE Trans. Neural Networks Learn. Syst. 2019, 1–12 (2019)

    Google Scholar 

  10. Gao, R., et al.: Time-distanced gates in long short-term memory networks. Med. Image Anal. 65, 101785 (2020)

    Google Scholar 

  11. Gao, R. et al.: Deep Multi-path Network Integrating Incomplete Biomarker and Chest CT Data for Evaluating Lung Cancer Risk. arXiv:2010.09524 (2021)

  12. Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976). https://doi.org/10.1093/biomet/63.3.581

    Article  MathSciNet  MATH  Google Scholar 

  13. Van Buuren, S.: Flexible imputation of missing data. CRC Press (2018)

    Google Scholar 

  14. Mazumder, R., Hastie, T., Edu, H., Tibshirani, R., Edu, T., Jaakkola, T.: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Yoon, J., Jordon, J., Van Der Schaar, M.: GAIN: missing data imputation using generative adversarial nets. In: International Conference on Machine Learning, pp. 9042–9051. International Machine Learning Society (IMLS) (2018)

    Google Scholar 

  16. Stekhoven, D.J., Bühlmann, P.: Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012)

    Article  Google Scholar 

  17. Mattei, P.A., Freiisen, J.: Miwae: deep generative modelling and imputation of incomplete data sets. In: 36th International Conference on Machine Learning, ICML 2019, pp. 7762–7772 (2019)

    Google Scholar 

  18. Cheng, S., Li, -Xian, Marlin, B.M.: Learning from irregularly-sampled time series: a missing data perspective. In: International Conference Machine Learning (2020)

    Google Scholar 

  19. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations, ICLR (2014)

    Google Scholar 

  20. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  21. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial Feature Learning (2016)

    Google Scholar 

  22. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets. arXiv Prepr. arXiv:1411.1784 (2014)

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_81

    Chapter  Google Scholar 

  25. Mirsky, Y., Mahler, T., Shelef, I., Elovici, Y.: CT-GAN: malicious tampering of 3D medical imagery using deep learning. In: Proceedings of the 28th USENIX Security Symposium, pp. 461–478 (2019)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  27. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  28. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  29. Mateuszbuda: Statistical functions based on bootstrapping for computing confidence intervals and p-values comparing machine learning models and human readers. https://github.com/mateuszbuda/ml-stat-util. Accessed 27 Feb 2021

Download references

Acknowledgement

This research was supported by NSF CAREER 1452485, R01 EB017230 and R01 CA253923. This study was supported in part by U01 CA196405 to Massion. This project was supported in part by the National Center for Research Resources, Grant UL1 RR024975-01, and is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06. This study was funded in part by the Martineau Innovation Fund Grant through the Vanderbilt-Ingram Cancer Center Thoracic Working Group and NCI Early Detection Research Network 2U01CA152662 to PPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riqiang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, R. et al. (2021). Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics