Abstract
Synthetic CT images are used in data augmentation methods to tackle small and fragmented training datasets in medical imaging. Three-dimensional conditional generative adversarial networks generate lung nodule synthesis, controlling malignancy and benignancy. However, the synthesis still has limitations, such as spatial discontinuity, background changes, and vast computational cost. We propose a novel CT generation model using attribute-guided generative adversarial networks. The proposed model can generate 2D synthetic slices sequentially with U-Net architecture and bi-directional convolutional long short-term memory for nodule reconstruction and injection. Nodule feature information is considered as input in the latent space in U-Net to generate targeted synthetic nodules. The benchmark with LIDC-IDRI dataset showed that the lung nodule synthesis quality is comparable to 3D generative models in the Visual Turing test with lower computation costs.
S. Suh and S. Cheon—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
Gao, C., Clark, S., Furst, J., Raicu, D.: Augmenting LIDC dataset using 3D generative adversarial networks to improve lung nodule detection. In: Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950, p. 109501K. International Society for Optics and Photonics (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
Han, C., et al.: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection. In: 2019 International Conference on 3D Vision (3DV), pp. 729–737. IEEE (2019)
Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_81
Liu, S., et al.: Decompose to manipulate: manipulable object synthesis in 3D medical images with structured image decomposition. arXiv preprint arXiv:1812.01737 (2018)
Novikov, A.A., Major, D., Wimmer, M., Lenis, D., Bühler, K.: Deep sequential segmentation of organs in volumetric medical scans. IEEE Trans. Med. Imag. 38(5), 1207–1215 (2018)
Park, H., Yoo, Y., Kwak, N.: Mc-GAN: multi-conditional generative adversarial network for image synthesis. arXiv preprint arXiv:1805.01123 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Xu, Z., et al.: Tunable CT lung nodule synthesis conditioned on background image and semantic features. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 62–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_7
Yang, J., et al.: Class-aware adversarial lung nodule synthesis in CT images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1348–1352. IEEE (2019)
Acknowledgment
This work is supported by Korea Institute of Science and Technology Europe project 12120. KIST Europe collaborated with KIST Seoul (Hanyang University-KIST biomedical fellowship program) and Catholic Medical Center in Korea. The authors gave special thanks to Soyun Chang and Kyongmin Beck for activate participation to the visual turing test and valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Suh, S., Cheon, S., Chang, DJ., Lee, D., Lee, Y.O. (2021). Sequential Lung Nodule Synthesis Using Attribute-Guided Generative Adversarial Networks. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-87231-1_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87230-4
Online ISBN: 978-3-030-87231-1
eBook Packages: Computer ScienceComputer Science (R0)