Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interactive Smoothing Parameter Optimization in DBT Reconstruction Using Deep Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

  • 7092 Accesses

Abstract

Medical image reconstruction algorithms such as Penalized Weighted Least Squares (PWLS) typically rely on a good choice of tuning parameters such as the number of iterations, the strength of regularizar, etc. However, obtaining a good estimate of such parameters is often done using trial and error methods. This process is very time consuming and laborious especially for high resolution images. To solve this problem we propose an interactive framework. We focus on the regularization parameter and train a CNN to imitate its impact on image for varying values. The trained CNN can be used by a human practitioner to tune the regularization strength on-the-fly as per the requirements. Taking the example of Digital Breast Tomosynthesis reconstruction, we demonstrate the feasibility of our approach and also discuss the future applications of this interactive reconstruction approach. We also test the proposed methodology on public Walnut and Lodopab CT reconstruction datasets to show it can be generalized to CT reconstruction as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sahu, P., Huang, H., Zhao, W., Qin, H.: Using virtual digital breast tomosynthesis for de-noising of low-dose projection images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1647–1651. IEEE (2019)

    Google Scholar 

  2. Der Sarkissian, H., Lucka, F., van Eijnatten, M., Colacicco, G., Coban, S.B., Batenburg, K.J.: A cone-beam x-ray computed tomography data collection designed for machine learning. Sci. Data 6(1), 1–8 (2019)

    Article  Google Scholar 

  3. Leuschner, J., Schmidt, M., Baguer, D.O., Maass, P.: LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction. Sci. Data 8(1), 1–12 (2021)

    Article  Google Scholar 

  4. Shen, C., Gonzalez, Y., Chen, L., Jiang, S.B., Jia, X.: Intelligent parameter tuning in optimization-based iterative CT reconstruction via deep reinforcement learning. IEEE Trans. Med. Imaging 37(6), 1430–1439 (2018)

    Article  Google Scholar 

  5. Barrett, H.H., Yao, J., Rolland, J.P., Myers, K.J.: Model observers for assessment of image quality. Proc. Nat. Acad. Sci. 90(21), 9758–9765 (1993)

    Article  Google Scholar 

  6. Rose, S.D., Roth, J., Zimmerman, C., Reiser, I., Sidky, E.Y., Pan, X.: Parameter selection with the hotelling observer in linear iterative image reconstruction for breast tomosynthesis. In: Medical Imaging 2018: Image Perception, Observer Performance, and Technology Assessment, voL. 10577, p. 105770P. International Society for Optics and Photonics (2018)

    Google Scholar 

  7. Sidky, E.Y., Duchin, Y., Reiser, I., Ullberg, C., Pan, X.: Optimizing algorithm parameters based on a model observer detection task for image reconstruction in digital breast tomosynthesis. In: 2011 IEEE Nuclear Science Symposium Conference Record, pp. 4230–4232. IEEE (2011)

    Google Scholar 

  8. Michielsen, K., Nuyts, J., Cockmartin, L., Marshall, N., Bosmans, H.: Design of a model observer to evaluate calcification detectability in breast tomosynthesis and application to smoothing prior optimization. Med. Phys. 43(12), 6577–6587 (2016)

    Article  Google Scholar 

  9. Zeng, R., Park, S., Bakic, P., Myers, K.J.: Evaluating the sensitivity of the optimization of acquisition geometry to the choice of reconstruction algorithm in digital breast tomosynthesis through a simulation study. Phys. Med. Biol. 60(3), 1259 (2015)

    Article  Google Scholar 

  10. Makeev, A., Glick, S.J.: Investigation of statistical iterative reconstruction for dedicated breast CT. Med. Phys. 40(8), 081904 (2013)

    Article  Google Scholar 

  11. Racine, D., Ba, A.H., Ott, J.G., Bochud, F.O., Verdun, F.R.: Objective assessment of low contrast detectability in computed tomography with channelized hotelling observer. Physica Medica 32(1), 76–83 (2016)

    Article  Google Scholar 

  12. Platiša, L.: Channelized hotelling observers for the assessment of volumetric imaging data sets. JOSA A 28(6), 1145–1163 (2011)

    Article  Google Scholar 

  13. Brankov, J.G., Yang, Y., Wei, L., El Naqa, I., Wernick, M.N.: Learning a channelized observer for image quality assessment. IEEE Trans. Med. Imaging 28(7), 991–999 (2009)

    Article  Google Scholar 

  14. Kopp, F.K., Catalano, M., Pfeiffer, D., Fingerle, A.A., Rummeny, E.J., Noël, P.B.: CNN as model observer in a liver lesion detection task for x-ray computed tomography: a phantom study. Med. Phys. 45(10), 4439–4447 (2018)

    Article  Google Scholar 

  15. Massanes, F., Brankov, J.G.: Evaluation of CNN as anthropomorphic model observer. In Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, vol. 10136, p. 101360Q. International Society for Optics and Photonics (2017)

    Google Scholar 

  16. Kim, B., Han, M., Baek, J.: A convolutional neural network-based anthropomorphic model observer for signal detection in breast CT images without human-labeled data. IEEE Access 8, 162122–162131 (2020)

    Article  Google Scholar 

  17. Sghaier, M., Chouzenoux, E., Palma, G., Pesquet, J.-C., Muller, S.: A new approach for microcalcification enhancement in digital breast tomosynthesis reconstruction. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1450–1454. IEEE (2019)

    Google Scholar 

  18. Brankov, J.G., Pretorius, P.H.: Personalized numerical observer. In: Medical Imaging 2010: Image Perception, Observer Performance, and Technology Assessment, vol. 7627, p. 76270T. International Society for Optics and Photonics (2010)

    Google Scholar 

  19. Cheng, Y., et al.: Validation of algorithmic CT image quality metrics with preferences of radiologists. Med. Phys. 46(11), 4837–4846 (2019)

    Article  Google Scholar 

  20. Lee, H.C., et al.: Variable step size methods for solving simultaneous algebraic reconstruction technique (SART)-type CBCT reconstructions. Oncotarget 8(20), 33827 (2017)

    Article  Google Scholar 

  21. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  22. Wang, G., Jiang, M.: Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART). J. X-ray Sci. Technol. 12(3), 169–177 (2004)

    Google Scholar 

  23. Van Aarle, W.: Fast and flexible x-ray tomography using the Astra toolbox. Opt. Express 24(22), 25129–25147 (2016)

    Article  Google Scholar 

  24. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  25. Reisenhofer, R., Bosse, S., Kutyniok, G., Wiegand, T.: A HAAR wavelet-based perceptual similarity index for image quality assessment. Signal Process. Image Commun. 61, 33–43 (2018)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1715985 and IIS-1812606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjal Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, P., Huang, H., Zhao, W., Qin, H. (2021). Interactive Smoothing Parameter Optimization in DBT Reconstruction Using Deep Learning. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics