Abstract
Trauma and orthopedic surgeries that involve fluoroscopic guidance crucially depend on the acquisition of correct anatomy-specific standard projections for monitoring and evaluating the surgical result. This implies repeated acquisitions or even continuous fluoroscopy. To reduce radiation exposure and time, we propose to automate this procedure and estimate the C-arm pose update directly from a first X-ray without the need for a pre-operative computed tomography scan (CT) or additional technical equipment. Our method is trained on digitally reconstructed radiographs (DRRs) which uniquely provide ground truth labels for arbitrary many training examples. The simulated images are complemented with automatically generated segmentations, landmarks, as well as a k-wire and screw simulation. To successfully achieve a transfer from simulated to real X-rays, and also to increase the interpretability of results, the pipeline was designed by closely reflecting on the actual clinical decision-making of spinal neurosurgeons. It explicitly incorporates steps like region-of-interest (ROI) localization, detection of relevant and view-independent landmarks, and subsequent pose regression. To validate the method on real X-rays, we performed a large specimen study with and without implants (i.e. k-wires and screws). The proposed procedure obtained superior C-arm positioning accuracy (\(p_{wilcoxon}\ll 0.01\)), robustness, and generalization capabilities compared to the state-of-the-art direct pose regression framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bier, B., et al.: Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1463–1473 (2019). https://doi.org/10.1007/s11548-019-01975-5
Binder, N., Bodensteiner, C., Matthäus, L., Burgkart, R., Schweikard, A.: Image guided positioning for an interactive C-arm fluoroscope. Int. J. Comput. Assist. Radiol. Surg., 5–7 (2006)
Bott, O., Dresing, K., Wagner, M., Raab, B., Teistler, M.: Informatics in radiology: use of a C-arm fluoroscopy simulator to support training in intraoperative radiography. Radiographics 31(3), E65–E75 (2011). https://doi.org/10.1148/rg.313105125
Bui, M., Albarqouni, S., Schrapp, M., Navab, N., Ilic, S.: X-ray PoseNet: 6 DoF pose estimation for mobile X-ray devices. In: 2017 IEEE Winter Conference on Applications of Computer Vision, pp. 1036–1044 (2017). https://doi.org/10.1109/WACV.2017.120
De Silva, T., et al.: C-arm positioning using virtual fluoroscopy for image-guided surgery. In: Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling 10135, p. 101352K (2017)
Fotouhi, J., et al.: Interactive flying frustums (IFFs): spatially aware surgical data visualization. Int. J. Comput. Assist. Radiol. Surg., 913–922 (2019)
Gong, R., Jenkins, B., Sze, R., Yaniv, Z.: A cost effective and high fidelity fluoroscopy simulator using the image-guided surgery toolkit (IGSTK). In: Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling 9036, p. 903618 (2014)
Grupp, R., et al.: Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. Int. J. Comput. Assist. Radiol. Surg., 1–11 (2020). http://dx.doi.org/10.1007/s11548-020-02162-7
Haiderbhai, M., Turrubiates, J., Gutta, V., Fallavollita, P.: Automatic C-arm positioning using multi-functional user interface. CMBES Proc. 42 (2019)
Hou, B., et al.: Predicting slice-to-volume transformation in presence of arbitrary subject motion. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 296–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_34
Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)
Isensee, F., et al.: batchgenerators - a python framework for data augmentation. (2020). https://doi.org/10.5281/zenodo.3632567
Kausch, L., et al.: Toward automatic C-arm positioning for standard projections in orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg., 1–11 (2020). https://doi.org/10.1007/s11548-020-02204-0
Kausch, L., Scherer, M., Thomas, S., Klein, A., Isensee, F., Maier-Hein, K.: Automatic image-based pedicle screw planning. In: Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling 11598, pp. 115981I (2021). https://doi.org/10.1117/12.2582571
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
Klein, A., Wasserthal, J., Greiner, M., Zimmerer, D., Maier-Hein, K.: MIC-DKFZ/basic\_unet\_example: Release (v2019.01) (2019). Zenodo. https://doi.org/10.5281/zenodo.2549509
Kordon, F., Maier, A., Swartman, B., Kunze, H.: Font augmentation: implant and surgical tool simulation for X-ray image processing. Bildverarbeitung für die Medizin, 176–182 (2020). http://dx.doi.org/10.1007/978-3-658-29267-6_36
Kügler, D., et al.: i3PosNet: instrument pose estimation from X-ray in temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 15(7), 1137–1145 (2020). https://doi.org/10.1007/s11548-020-02157-4
Löffler, M., et al.: A vertebral segmentation dataset with fracture grading. Radiol. Artif. Intell. 2(4), e190138 (2020). http://dx.doi.org/10.1148/ryai.2020190138
Matthews, F., et al.: Navigating the fluoroscope’s C-arm back into position: an accurate and practicable solution to cut radiation and optimize intraoperative workflow. J. Orthopaedic Trauma 21(10), 687–692 (2007)
Miao, S., Wang, Z., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016). https://doi.org/10.1109/TMI.2016.2521800
Rikli, D., et al.: Optimizing intraoperative imaging during proximal femoral fracture fixation – a performance improvement program for surgeons. Injury 104, 19–19 (2018). https://doi.org/10.1016/j.injury.2017.11.024
Toth, D., Cimen, S., Ceccaldi, P., Kurzendorfer, T., Rhode, K., Mountney, P.: Training deep networks on domain randomized synthetic X-ray data for cardiac interventions. In: International Conference on Medical Imaging with Deep Learning, pp. 468–482 (2019)
Unberath, M., et al.: Augmented reality-based feedback for technician-in-the-loop C-arm repositioning. Healthcare Technol. Lett., 143–147 (2018). http://dx.doi.org/10.1049/htl.2018.5066
Unberath, M., et al.: DeepDRR – a catalyst for machine learning in fluoroscopy-guided procedures. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_12
Unberath, M., et al.: Enabling machine learning in x-ray-based procedures via realistic simulation of image formation. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1517–1528 (2019). https://doi.org/10.1007/s11548-019-02011-2
Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 599–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kausch, L. et al. (2021). C-Arm Positioning for Spinal Standard Projections in Different Intra-operative Settings. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-87202-1_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87201-4
Online ISBN: 978-3-030-87202-1
eBook Packages: Computer ScienceComputer Science (R0)