Nothing Special   »   [go: up one dir, main page]

Skip to main content

Juvenile Refractive Power Prediction Based on Corneal Curvature and Axial Length via a Domain Knowledge Embedding Network

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12970))

Included in the following conference series:

  • 1343 Accesses

Abstract

Traditional cycloplegic refractive power detection with specific lotions dropping may cause side-effects, e.g., the pupillary retraction disorder, on juvenile eyes. In this paper, we develop a novel neural network algorithm to predict the refractive power, which is assessed by the Spherical Equivalent (SE), using real-world clinical non-cycloplegic refraction records. Participants underwent a comprehensive ophthalmic examination to obtain several related parameters, including sphere degree, cylinder degree, axial length, flat keratometry, and steep keratometry. Based on these quantitative biomedical parameters, a novel neural network model is trained to predict the SE. On the whole age test dataset, the domain knowledge embedding network (DKE-Net) prediction accuracies of SE achieve 59.82% (between \(\pm 0.5D\)), 86.85% (between \(\pm 1D\)), 95.54% (between \(\pm 1.5D\)), and 98.57% (between \(\pm 2D\)), which demonstrate superior performance over conventional machine learning algorithms on real-world clinical electronic refraction records. Also, the SE prediction accuracies on the excluded examples that are disqualified for model training, are 2.16% (between \(\pm 0.5D\)), 3.76% (between \(\pm 1D\)), 6.15% (between \(\pm 1.5D\)), and 8.78% (between \(\pm 2D\)). This is the leading application to predict refraction power using a neural network and domain knowledge, to the best of our knowledge, with a satisfactory accuracy level. Moreover, the model can also assist in diagnosing some specific kinds of ocular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dolgin E.: The myopia boom. Nature 519, 276–278 (2015)

    Google Scholar 

  2. Chen, M., Wu, A., Zhang, L., et al.: The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol. 18, 1–10 (2018)

    Google Scholar 

  3. Vitale, S., Cotch, M.F., Sperduto, R., Ellwein, L.: Costs of refractive correction of distance vision impairment in the United States, 1999–2002. Ophthalmology 113, 2163–2170 (2006)

    Google Scholar 

  4. Zadnik, K., Mutti, D.O., Friedman, N.E., et al.: Ocular predictors of the onset of juvenile myopia. Investig. Ophthalmol. Vis. Sci. 40, 1936–1943 (1999)

    Google Scholar 

  5. Mutti, D.O., Hayes, J.R., Mitchell, G.L., et al.: Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 47, 2510–2519 (2007)

    Google Scholar 

  6. Attebo, K., Ivers, R.Q., Mitchell, P.: Refractive errors in an older population. Ophthalmology 106, 1066–1072 (1999)

    Google Scholar 

  7. Saw, S.M., Chua, W.H., Gazzard, G., et al.: Eye growth changes in myopic children in Singapore. Br. J. Ophthalmol. 89, 1489–1494 (2005)

    Google Scholar 

  8. Saw, S.M., Chan, Y.H., Wong, W.L., et al.: Prevalence and risk factors for refractive errors in the Singapore Malay eye survey. Ophthalmology 115, 1713–1719 (2008)

    Google Scholar 

  9. Lou, L., Liu, X.I., Tang, X., et al.: Gender inequality in global burden of uncorrected refractive error. Am. J. Ophthalmol. 198, 1–7 (2018)

    Google Scholar 

  10. Vainer, I., Mimouni, M., Rabina, G., et al.: Age- and gender-related characteristics of corneal refractive parameters in a large cohort study. Am. J. Ophthalmol. 209, 45–54 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Guangdong Provincial Department of Education (2020ZDZX3043), Guangdong Provincial Key Laboratory (2020B121201001), and Shenzhen Natural Science Fund (JCYJ20200109140820699 and the Stable Support Plan Program 20200925174052004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Risa Higashita or Jiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2021). Juvenile Refractive Power Prediction Based on Corneal Curvature and Axial Length via a Domain Knowledge Embedding Network. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87000-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86999-1

  • Online ISBN: 978-3-030-87000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics