Abstract
Traditional cycloplegic refractive power detection with specific lotions dropping may cause side-effects, e.g., the pupillary retraction disorder, on juvenile eyes. In this paper, we develop a novel neural network algorithm to predict the refractive power, which is assessed by the Spherical Equivalent (SE), using real-world clinical non-cycloplegic refraction records. Participants underwent a comprehensive ophthalmic examination to obtain several related parameters, including sphere degree, cylinder degree, axial length, flat keratometry, and steep keratometry. Based on these quantitative biomedical parameters, a novel neural network model is trained to predict the SE. On the whole age test dataset, the domain knowledge embedding network (DKE-Net) prediction accuracies of SE achieve 59.82% (between \(\pm 0.5D\)), 86.85% (between \(\pm 1D\)), 95.54% (between \(\pm 1.5D\)), and 98.57% (between \(\pm 2D\)), which demonstrate superior performance over conventional machine learning algorithms on real-world clinical electronic refraction records. Also, the SE prediction accuracies on the excluded examples that are disqualified for model training, are 2.16% (between \(\pm 0.5D\)), 3.76% (between \(\pm 1D\)), 6.15% (between \(\pm 1.5D\)), and 8.78% (between \(\pm 2D\)). This is the leading application to predict refraction power using a neural network and domain knowledge, to the best of our knowledge, with a satisfactory accuracy level. Moreover, the model can also assist in diagnosing some specific kinds of ocular disorders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dolgin E.: The myopia boom. Nature 519, 276–278 (2015)
Chen, M., Wu, A., Zhang, L., et al.: The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol. 18, 1–10 (2018)
Vitale, S., Cotch, M.F., Sperduto, R., Ellwein, L.: Costs of refractive correction of distance vision impairment in the United States, 1999–2002. Ophthalmology 113, 2163–2170 (2006)
Zadnik, K., Mutti, D.O., Friedman, N.E., et al.: Ocular predictors of the onset of juvenile myopia. Investig. Ophthalmol. Vis. Sci. 40, 1936–1943 (1999)
Mutti, D.O., Hayes, J.R., Mitchell, G.L., et al.: Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 47, 2510–2519 (2007)
Attebo, K., Ivers, R.Q., Mitchell, P.: Refractive errors in an older population. Ophthalmology 106, 1066–1072 (1999)
Saw, S.M., Chua, W.H., Gazzard, G., et al.: Eye growth changes in myopic children in Singapore. Br. J. Ophthalmol. 89, 1489–1494 (2005)
Saw, S.M., Chan, Y.H., Wong, W.L., et al.: Prevalence and risk factors for refractive errors in the Singapore Malay eye survey. Ophthalmology 115, 1713–1719 (2008)
Lou, L., Liu, X.I., Tang, X., et al.: Gender inequality in global burden of uncorrected refractive error. Am. J. Ophthalmol. 198, 1–7 (2018)
Vainer, I., Mimouni, M., Rabina, G., et al.: Age- and gender-related characteristics of corneal refractive parameters in a large cohort study. Am. J. Ophthalmol. 209, 45–54 (2020)
Acknowledgments
This work was supported in part by Guangdong Provincial Department of Education (2020ZDZX3043), Guangdong Provincial Key Laboratory (2020B121201001), and Shenzhen Natural Science Fund (JCYJ20200109140820699 and the Stable Support Plan Program 20200925174052004).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y. et al. (2021). Juvenile Refractive Power Prediction Based on Corneal Curvature and Axial Length via a Domain Knowledge Embedding Network. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-87000-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86999-1
Online ISBN: 978-3-030-87000-3
eBook Packages: Computer ScienceComputer Science (R0)