Nothing Special   »   [go: up one dir, main page]

Skip to main content

Monitor Mangrove Forest Dynamics from Multi-temporal Landsat 8-OLI Images in the Southern Coast of Sancti Spíritus Province (Cuba)

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In the coastal tropics and subtropical regions, fragile ecosystems such as deltas, mangrove forests, and swamps are common, whose ecological stability strictly depends on the quality management of hydrological resources at the basin level. The National Hydrographic Basin Council in Cuba, protect the hydrographic basins, considered as the reference unit for the integrated management of water resources. Moreover, the council aims at preventing negative impacts on of these vital ecosystems for their key services to the overall social and economic wellbeing. As an example, the Zaza River basin in the of Province of Sancti Spiritus, the mangrove forest is suffering from significant decay, in particular on the southern coasts. A significant improvement of the water resources sustainable management in Cuba, is a more reliable and timely monitoring. Considering the extreme conditions and the limited accessibility of mangroves, remote sensing and others earth observations techniques represents a suitable tool for monitoring the mangrove forest in coastal areas. In our study, we used a set of 10 multispectral Landsat – 8 OLI images from November 2014 to December 2015.

By collecting campaigns on mangroves’ phenology, we have: 1) studied the relationships between phenology and spectral behavior of species; and, 2) set up a classification framework to assess the forests composition remotely, with special attention to mangroves. The methodology here implemented could be effectively applied in all coastal natural ecosystems of this island to improve the knowledge about the critical issues of these very fragile ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E.C.: Directive 2000/60/EC: European parliament and of the European union (2000)

    Google Scholar 

  2. Gain, A.K., Rouillard, J.J., Benson, D.: can integrated water resources management increase adaptive capacity to climate change adaptation? a critical review. J. Water Resour. Prot. 5, 11–20 (2013)

    Article  Google Scholar 

  3. GWP.: Integrated Water Resources Management. TAC background paper No. 4, GWP, Stockholm, Sweden (2000)

    Google Scholar 

  4. Feller, I.C., Sitnik, M. (eds.).: Mangrove Ecology Workshop Manual. Smithsonian Institution, Washington, DC, USA (1996)

    Google Scholar 

  5. Menéndez, L,. Priego, A.: Los manglares de Cuba: Ecología. En El ecosistema de manglar en América Latina y la Cuenca del Caribe: su manejo y conservación (D. Suman, ed.), Rosenstiel School of Marine and Atmospheric Science & The Tinker Foundation, pp. 64–75 (1994)

    Google Scholar 

  6. Blasco, F., Gauquelin, T., Rasolofoharinoro, M., Denis, J., Aizpuru, M., Caldairou, V.: Recent advances in mangrove studies using remote sensing data. Mar. Freshwater Res. 49, 287–296 (1998)

    Article  Google Scholar 

  7. Kovacs, J.M., Wang, J., Blanco-Correa, M.: Mapping disturbances in a mangrove forest using multi-data Landsat TM imagery. Environ. Manag. 27(5), 763–776 (2001)

    Article  Google Scholar 

  8. Modica, G., Solano, F., Merlino, A., Di Fazio, S., Barreca, F., Laudari, L., Fichera, C.R.: Using Landsat 8 imagery in detecting cork oak (Quercus suber L.) woodlands: a case study in Calabria Italy. J. Agric. Eng. 47(4), 205–215 (2016). https://doi.org/10.4081/jae.2016.571

  9. Melaas, E.K., et al.: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 186, 452–464 (2016)

    Article  Google Scholar 

  10. Krause, G., Bock, M., Weiers, S., Braun, G.: mapping land-cover and mangrove structures with remote sensing techniques: a contribution to a synoptic gis in support of coastal management in North Brazil. Environ. Manag. 34(3), 429–440 (2004)

    Article  Google Scholar 

  11. Vaiphasa, C., Omsongwang, S., Vaiphasa, T., Skidmore, A.K.: tropical mangrove species discrimination using hyperspectral data: a laboratory study. Estuar. Coast. Shelf Sci. 65, 371–379 (2006)

    Article  Google Scholar 

  12. Vogelmann, J.E., Xian, G., Homer, C., Tolk, B.: monitoring gradual ecosystem change using landsat time series analyses: case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 122, 92–105 (2012)

    Article  Google Scholar 

  13. Kovacs, J.M., Zhang, C., Flores-Verdugo, F.J.: mapping the condition of mangroves of the Mexican pacific using c-band ENVISAT ASAR and landsat optical data. Cienc. Mar. 34(4), 407–418 (2008)

    Article  Google Scholar 

  14. Berlanga-Robles, Ruiz-Luna, A.: Análisis de las tendencias de cambio del bosque de mangle del sistema lagunar Teacapán-Agua brava, México. Una aproximación con el uso de imágenes de satélite Landsat. Publicaciones UCiencia. 23(1), 29–46 (2007)

    Google Scholar 

  15. Adam, E., Mutanga, O., Rugege, D.: Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecol. Manage. 18, 281–296 (2010)

    Article  Google Scholar 

  16. Kasawani, I., Norsaliza, U., Mohd, H.I.: analysis of spectral vegetation indices related to soil-line for mapping mangrove forest using satellite imagery. Appl. Remote Sens. J. 1(1), 25–31 (2010)

    Google Scholar 

  17. Kuenzer, C., Bluemel, A., Gebhardt, S., Vo, Q.T., Dech, S.: remote sensing of mangrove ecosystems: a review. Remote Sens. 3, 878–928 (2011)

    Article  Google Scholar 

  18. Giri, C., Pengra, B., Zhu, Z., Singh, A., Tiszen, L.L.: monitoring mangrove forest dynamics of the sundarsban in bangladesh nd india using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73, 91–100 (2007)

    Article  Google Scholar 

  19. Alatorre, L.C., Sanchez-Andres, R., Cirujano, S., Begueria, S., Sanchez-Carrillo, S.: identification of mangrove areas by remote sensing: the roc curve technique applied to northwestern Mexico Coastal zone using landsat imagery. Remote Sens. 3, 1568–1583 (2011)

    Article  Google Scholar 

  20. Chen, B., et al.: a mangrove forest map of china in 2015: analysis of time series landsat 7/8 and sentinel-1a imagery in google earth engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104–120 (2017)

    Article  Google Scholar 

  21. Somers, B., Verbesselt, J., Ampe, E.M., Sims, N., Verstraeten, W.W., Coppin, P.: spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globulus Labill plantations in southern Australia using landsat 5-TM and EO-1 hyperion data. Int. J. Appl. Earth Obs. Geoinf. 12(4), 270–277 (2010)

    Article  Google Scholar 

  22. Praticò, S., Solano, F., Di Fazio, S., Modica, G.: machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sens. 13, 586 (2021). https://doi.org/10.3390/rs13040586

    Article  Google Scholar 

  23. Modica, G., Merlino, A., Solano, F., Mercurio, R.: an index for the assessment of degraded Mediterranean forest ecosystems. For. Syst. 24, 5 (2015). https://doi.org/10.5424/fs/2015243-07855

    Article  Google Scholar 

  24. FAO.: The world’s mangroves 1980–2005. FAO FORESTRY PAPER 153, Rome. ISBN 978–92–5–105856–5 (2007)

    Google Scholar 

  25. Tomlinson, P.B.: The botany of mangroves. Cambridge University Press, Cambridge, United Kingdom (1986)

    Google Scholar 

  26. Choudhury, M.A.M., et al.: urban tree species identification and carbon stock mapping for urban green planning and management. Forests 11, 1226 (2020). https://doi.org/10.3390/f11111226

    Article  Google Scholar 

  27. Giri, C., et al.: status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011)

    Article  Google Scholar 

  28. Wang, L., Silván-Cárdenas, L., Sousa, W.P.: neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogram. Eng. Remote Sens. 2008(74), 921–927 (2008)

    Article  Google Scholar 

  29. Kanniah, K.D., Wai, N.S., Shin, A.L., Rasib, A.W.: per pixel and sub-pixel classifications of high-resolution satellite data for mangrove species mapping. Appl. GIS 3, 1–22 (2007)

    Google Scholar 

  30. Somers, B., Asner, G.P.: multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforest. Remote Sens. Environ. 136, 14–27 (2013)

    Article  Google Scholar 

  31. Howland, W.G.: multispectral aerial photography for wetland vegetation mapping. Photogram. Eng. Remote Sens. 46, 87–99 (1980)

    Google Scholar 

  32. Verheyeden, A., Dahdouh-Guebas, F., Thomaes, K., De Genst, W., Hettiarachch, S., Koedam, N.: High-resolution vegetation dat for mangrove research as obtained from aerial photography. Environ. Dev. Sustain. 4, 113–133 (2002)

    Article  Google Scholar 

  33. Menéndez, L., Guzmán, J.M., Capote, R.T., Rodríguez, L.F., González, A.V.: Situación Ambiental de los Manglares del Archipiélago Cubano. Casos de estudios: archipiélago Sabana Camagüey, franja sur de la Habana y costa norte de Ciudad Habana. En Memorias IV Convención Internacional sobre medio ambiente y desarrollo, 2 al 6 de junio de 2003, La Habana, pp. 435–451 (2003)

    Google Scholar 

  34. Menéndez, L., Guzmán, J.M.: Los manglares del archipiélago cubano: aspectos generales. In: L. Menéndez, J.M. Guzmán (eds.) Ecosistema de Manglar en el Archipiélago Cubano. UNESCO, Ciudad de la Habana, pp. 329 (2006)

    Google Scholar 

  35. Menéndez, J.M.G., Menéndez Carrera, L.: Protocolo para el monitoreo del ecosistema de manglar. Proyecto GEF/PNUD, Application de un enfoque regional al manejo de las àreas marino-costeras protegida en la Regiòn Archipiélagos del Sur de Cuba, La Habana (2013). ISBN: 978-959-287-042-0

    Google Scholar 

  36. Hesketh, M., Sanchez-Azofeifa, G.A.: the effect of seasonal spectral variation on species classification in the Panamanian Tropical Forest. Remote Sens. Environ. 118, 73–82 (2012)

    Article  Google Scholar 

  37. Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., Green, R.O.: mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 65, 267–279 (1998)

    Article  Google Scholar 

  38. Roberts, D.A., Halligan, K., Dennison, P.: VIPER Tools User Manual Version 1.5 (2007)

    Google Scholar 

  39. Plaza, A.: Proposición, validación y prueba de una metodología para el análisis de datos hiperespectrales que integra información espacial y espectral. Tesis doctoral (2002)

    Google Scholar 

  40. Menéndez, L., et al.: Informe de proyecto de investigación: Bases ecológicas para la restauración de manglares en áreas seleccionadas del Archipiélago cubano y su relación con los cambios globales. Informe final del proyecto. Programa Nacional de Cambios Globales y Evolución del Medio Ambiente Cubano. IES. CITMA, pp 153 (2000)

    Google Scholar 

  41. Meza Diaz, B., Blackburn, G.A.: remote sensing of mangrove biophysical properties: evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. Int. J. Remote Sens. 24, 53–73 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernesto Marcheggiani or MD Abdul Mueed Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marcheggiani, E. et al. (2021). Monitor Mangrove Forest Dynamics from Multi-temporal Landsat 8-OLI Images in the Southern Coast of Sancti Spíritus Province (Cuba). In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Springer, Cham. https://doi.org/10.1007/978-3-030-87007-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87007-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87006-5

  • Online ISBN: 978-3-030-87007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics