Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast Algorithms for the Rooted Triplet Distance Between Caterpillars

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12867))

Included in the following conference series:

  • 541 Accesses

Abstract

The rooted triplet distance measures the structural dissimilarity between two rooted phylogenetic trees (unordered trees with distinct leaf labels and no outdegree-1 nodes) having the same leaf label set. It is defined as the number of 3-subsets of the leaf label set that induce two different subtrees in the two trees. The fastest currently known algorithm for computing the rooted triplet distance was designed by Brodal et al. (SODA 2013). It runs in \(O(n \log n)\) time, where n is the number of leaf labels in the input trees, and a long-standing open question is whether this is optimal or not. In this paper, we present two new \(o(n \log n)\)-time algorithms for the special case of caterpillars (rooted phylogenetic trees in which every node has at most one non-leaf child), thus breaking the \(O(n \log n)\)-time bound for a fundamental class of trees. Our first algorithm makes use of a dynamic rank-select data structure by Raman et al. (WADS 2001) and runs in \(O(n \log n / \log \log n)\) time. Our second algorithm relies on an efficient orthogonal range counting algorithm invented by Chan and Pǎtraşcu (SODA 2010) and runs in \(O(n \sqrt{\log n})\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially resolved trees. Theoret. Comput. Sci. 412(48), 6634–6652 (2011)

    Article  MathSciNet  Google Scholar 

  2. Brodal, G.S., Fagerberg, R., Mailund, T., Pedersen, C.N.S., Sand, A.: Efficient algorithms for computing the triplet and quartet distance between trees of arbitrary degree. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 1814–1832. SIAM (2013)

    Google Scholar 

  3. Brodal, G.S., Mampentzidis, K.: Cache oblivious algorithms for computing the triplet distance between trees. In: 25th Annual European Symposium on Algorithms (ESA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  4. Chan, T.M., Pătraşcu, M.: Counting inversions, offline orthogonal range counting, and related problems. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 161–173. SIAM (2010)

    Google Scholar 

  5. Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)

    Article  Google Scholar 

  6. Dasgupta, B., He, X., Jiang, T., Li, M., Tromp, J.: On computing the nearest neighbor interchange distance. In: Proceedings of the DIMACS Workshop on Discrete Problems with Medical Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 55, pp. 125–143. American Mathematical Soc. (2000)

    Google Scholar 

  7. Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Classif. 2(1), 7–28 (1985)

    Article  MathSciNet  Google Scholar 

  8. Dobson, A.J.: Comparing the shapes of trees. In: Street, A.P., Wallis, W.D. (eds.) Combinatorial Mathematics III. LNM, vol. 452, pp. 95–100. Springer, Heidelberg (1975). https://doi.org/10.1007/BFb0069548

    Chapter  Google Scholar 

  9. Huelsenbeck, J.P., Nielsen, R., Ronquist, F., Bollback, J.P.: Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294(5550), 2310–2314 (2001)

    Article  Google Scholar 

  10. Jansson, J., Mampentzidis, K., T.P, S.: Building a small and informative phylogenetic supertree. In: 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  11. Jansson, J., Rajaby, R.: A more practical algorithm for the rooted triplet distance. J. Comput. Biol. 24(2), 106–126 (2017)

    Article  MathSciNet  Google Scholar 

  12. Kendall, M., Colijn, C.: Mapping phylogenetic trees to reveal distinct patterns of evolution. Mol. Biol. Evol. 33(10), 2735–2743 (2016)

    Article  Google Scholar 

  13. Liao, W., et al.: Alignment-free transcriptomic and metatranscriptomic comparison using sequencing signatures with variable length Markov chains. Sci. Rep. 6(1), 1–15 (2016)

    Article  Google Scholar 

  14. Moreno-Dominguez, D., Anwander, A., Knösche, T.R.: A hierarchical method for whole-brain connectivity-based parcellation. Hum. Brain Mapp. 35(10), 5000–5025 (2014)

    Article  Google Scholar 

  15. Nakhleh, L., Sun, J., Warnow, T., Linder, C.R., Moret, B.M.E., Tholse, A.: Towards the development of computational tools for evaluating phylogenetic network reconstruction methods. In: Biocomputing 2003, pp. 315–326. World Scientific (2002)

    Google Scholar 

  16. Page, R.D.M., Cruickshank, R., Johnson, K.P.: Louse (Insecta: Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable. Insect Mol. Biol. 11(4), 361–369 (2002)

    Article  Google Scholar 

  17. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6_39

    Chapter  MATH  Google Scholar 

  18. Robinson, D.F.: Comparison of labeled trees with valency three. J. Combin. Theory Ser. B 11(2), 105–119 (1971)

    Article  MathSciNet  Google Scholar 

  19. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53(1–2), 131–147 (1981)

    Article  MathSciNet  Google Scholar 

  20. Sand, A., Brodal, G.S., Fagerberg, R., Pedersen, C.N.S., Mailund, T.: A practical \({O}(n \log ^2 n)\) time algorithm for computing the triplet distance on binary trees. BMC Bioinform. 14, S18 (2013). https://doi.org/10.1186/1471-2105-14-S2-S18

    Article  Google Scholar 

Download references

Acknowledgment

JJ was partially funded by RGC/GRF project 15217019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing Lik Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jansson, J., Lee, W.L. (2021). Fast Algorithms for the Rooted Triplet Distance Between Caterpillars. In: Bampis, E., Pagourtzis, A. (eds) Fundamentals of Computation Theory. FCT 2021. Lecture Notes in Computer Science(), vol 12867. Springer, Cham. https://doi.org/10.1007/978-3-030-86593-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86593-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86592-4

  • Online ISBN: 978-3-030-86593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics