Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Heterogeneous Graph Embedding via Heterogeneous Hawkes Process

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12975))

Abstract

Graph embedding, aiming to learn low-dimensional representations of nodes while preserving valuable structure information, has played a key role in graph analysis and inference. However, most existing methods deal with static homogeneous topologies, while graphs in real-world scenarios are gradually generated with different-typed temporal events, containing abundant semantics and dynamics. Limited work has been done for embedding dynamic heterogeneous graphs since it is very challenging to model the complete formation process of heterogeneous events. In this paper, we propose a novel Heterogeneous Hawkes Process based dynamic Graph Embedding (HPGE) to handle this problem. HPGE effectively integrates the Hawkes process into graph embedding to capture the excitation of various historical events on the current type-wise events. Specifically, HPGE first designs a heterogeneous conditional intensity to model the base rate and temporal influence caused by heterogeneous historical events. Then the heterogeneous evolved attention mechanism is designed to determine the fine-grained excitation to different-typed current events. Besides, we deploy the temporal importance sampling strategy to sample representative events for efficient excitation propagation. Experimental results demonstrate that HPGE consistently outperforms the state-of-the-art alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at Aminer website.

  2. 2.

    Available at DBLP website.

  3. 3.

    Available at Yelp website.

References

  1. Bian, R., Koh, Y.S., Dobbie, G., Divoli, A.: Network embedding and change modeling in dynamic heterogeneous networks. In: SIGIR, pp. 861–864 (2019)

    Google Scholar 

  2. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE TKDE 30(9), 1616–1637 (2018)

    Google Scholar 

  3. Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: Representation learning for attributed multiplex heterogeneous network. In: ACM SIGKDD, pp. 1358–1368 (2019)

    Google Scholar 

  4. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional networks via importance sampling. In: ICLR (2018)

    Google Scholar 

  5. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: ACM SIGKDD, pp. 135–144 (2017)

    Google Scholar 

  6. Fu, T., Lee, W., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: CIKM, pp. 1797–1806 (2017)

    Google Scholar 

  7. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: WWW, pp. 2331–2341 (2020)

    Google Scholar 

  8. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. CoRR abs/1805.11273 (2018)

    Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  10. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017)

    Google Scholar 

  11. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NeuIPS, pp. 1024–1034 (2017)

    Google Scholar 

  12. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: WWW, pp. 2704–2710 (2020)

    Google Scholar 

  13. Ji, Y., et al.: Temporal heterogeneous interaction graph embedding for next-item recommendation. In: ECML-PKDD (2020)

    Google Scholar 

  14. Ji, Y., et al.: Accelerating large-scale heterogeneous interaction graph embedding learning via importance sampling. ACM TKDD 15(1), 1–23 (2020)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  17. Lu, Y., Wang, X., Shi, C., Yu, P.S., Ye, Y.: Temporal network embedding with micro- and macro-dynamics. In: CIKM, pp. 469–478 (2019)

    Google Scholar 

  18. Luo, W., et al.: Dynamic heterogeneous graph neural network for real-time event prediction. In: ACM SIGKDD, pp. 3213–3223 (2020)

    Google Scholar 

  19. Ma, Y., Guo, Z., Ren, Z., Tang, J., Yin, D.: Streaming graph neural networks. In: SIGIR, pp. 719–728 (2020)

    Google Scholar 

  20. Manessi, F., Rozza, A., Manzo, M.: Dynamic graph convolutional networks. Pattern Recogn. 97, 107000 (2020)

    Article  Google Scholar 

  21. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time dynamic network embeddings. In: WWW, pp. 969–976 (2018)

    Google Scholar 

  22. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: AAAI, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  23. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: ACM SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  24. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. VLDB 4(11), 992–1003 (2011)

    Google Scholar 

  25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  26. Wang, X., Bo, D., Shi, C., Fan, S., Ye, Y., Yu, P.S.: A survey on heterogeneous graph embedding: methods, techniques, applications and sources. arXiv preprint arXiv:2011.14867 (2020)

  27. Wang, X., et al.: Heterogeneous graph attention network. In: WWW, pp. 2022–2032 (2019)

    Google Scholar 

  28. Wang, X., Lu, Y., Shi, C., Wang, R., Cui, P., Mou, S.: Dynamic heterogeneous information network embedding with meta-path based proximity. TKDE (2020)

    Google Scholar 

  29. Wu, W., Liu, H., Zhang, X., Liu, Y., Zha, H.: Modeling event propagation via graph biased temporal point process. IEEE TNNLS (2020)

    Google Scholar 

  30. Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., Achan, K.: Inductive representation learning on temporal graphs. In: ICLR (2020)

    Google Scholar 

  31. Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y., Lin, Y.: Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN. arXiv preprint arXiv:2004.01024 (2020)

  32. Yang, L., Xiao, Z., Jiang, W., Wei, Y., Hu, Y., Wang, H.: Dynamic heterogeneous graph embedding using hierarchical attentions. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 425–432. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_53

    Chapter  Google Scholar 

  33. Yin, Y., Ji, L.X., Zhang, J.P., Pei, Y.L.: DHNE: network representation learning method for dynamic heterogeneous networks. IEEE Access 7, 134782–134792 (2019)

    Article  Google Scholar 

  34. Zhao, J., Wang, X., Shi, C., Hu, B., Song, G., Ye, Y.: Heterogeneous graph structure learning for graph neural networks. In: AAAI (2021)

    Google Scholar 

  35. Zheng, V.W., et al.: Heterogeneous embedding propagation for large-scale e-commerce user alignment. In: ICDM, pp. 1434–1439 (2018)

    Google Scholar 

  36. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via neighborhood formation. In: ACM SIGKDD, pp. 2857–2866 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No. U20B2045, 61772082, 62002029). This research is also supported by the Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funds (Grant No. A20H6b0151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, Y., Jia, T., Fang, Y., Shi, C. (2021). Dynamic Heterogeneous Graph Embedding via Heterogeneous Hawkes Process. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12975. Springer, Cham. https://doi.org/10.1007/978-3-030-86486-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86486-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86485-9

  • Online ISBN: 978-3-030-86486-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics