Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Nearest Neighbor Median Shift Clustering for Binary Data

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2021 (ICANN 2021)

Abstract

We describe in this paper the theory and practice behind a new modal clustering method for binary data. Our approach (BinNNMS) is based on the nearest neighbor median shift. The median shift is an extension of the well-known mean shift, which was designed for continuous data, to handle binary data. We demonstrate that BinNNMS can discover accurately the location of clusters in binary data with theoretical and experimental analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aitchison, J., Aitken, C.G.G.: Multivariate binary discrimination by the kernel method. Biometrika 63, 413–420 (1976)

    Article  MathSciNet  Google Scholar 

  2. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  3. Diday, E., Simon, J.C.: Clustering Analysis, pp. 47–94. Springer, Berlin (1976). https://doi.org/10.1007/978-3-642-96303-2_3

  4. Duong, T., Beck, G., Azzag, H., Lebbah, M.: Nearest neighbour estimators of density derivatives, with application to mean shift clustering. Pattern Recogn. Lett. 80, 224–230 (2016). https://doi.org/10.1016/j.patrec.2016.06.021

    Article  Google Scholar 

  5. Fukunaga, K., Hostetler, L.: Optimization of \(k\)-nearest-neighbor density estimates. IEEE Trans. Inform. Theory 19, 320–326 (1973)

    Article  MathSciNet  Google Scholar 

  6. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE T. Inform. Theory 21, 32–40 (1975). https://doi.org/10.1109/TIT.1975.1055330

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950). https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, Z.: Clustering large data sets with mixed numeric and categorical values. In: The First Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 21–34 (1997)

    Google Scholar 

  9. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  10. Lebbah, M., Badran, F., Thiria, S.: Topological map for binary data. In: ESANN 2000, 8th European Symposium on Artificial Neural Networks, Bruges, Belgium, 26–28 April 2000, Proceedings, pp. 267–272 (2000)

    Google Scholar 

  11. Leisch, F., Weingessel, A., Dimitriadou, E.: Competitive learning for binary valued data. In: Niklasson, L., Bodén, M., Ziemke, T. (eds.) ICANN 1998. PNC, pp. 779–784. Springer, London (1998). https://doi.org/10.1007/978-1-4471-1599-1_120

    Chapter  Google Scholar 

  12. Li, T.: A unified view on clustering binary data. Mach. Learn. 62, 199–215 (2006). https://doi.org/10.1007/s10994-005-5316-9

    Article  MATH  Google Scholar 

  13. Loftsgaarden, D.O., Quesenberry, C.P.: A nonparametric estimate of a multivariate density function. Ann. Math. Statist. 36, 1049–1051 (1965). https://doi.org/10.1214/aoms/1177700079

  14. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of California Press, Berkeley, USA (1967). https://projecteuclid.org/euclid.bsmsp/1200512992

  15. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Lebbah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beck, G., Lebbah, M., Azzag, H., Duong, T. (2021). A New Nearest Neighbor Median Shift Clustering for Binary Data. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12895. Springer, Cham. https://doi.org/10.1007/978-3-030-86383-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86383-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86382-1

  • Online ISBN: 978-3-030-86383-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics