Abstract
We describe in this paper the theory and practice behind a new modal clustering method for binary data. Our approach (BinNNMS) is based on the nearest neighbor median shift. The median shift is an extension of the well-known mean shift, which was designed for continuous data, to handle binary data. We demonstrate that BinNNMS can discover accurately the location of clusters in binary data with theoretical and experimental analyses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aitchison, J., Aitken, C.G.G.: Multivariate binary discrimination by the kernel method. Biometrika 63, 413–420 (1976)
Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Diday, E., Simon, J.C.: Clustering Analysis, pp. 47–94. Springer, Berlin (1976). https://doi.org/10.1007/978-3-642-96303-2_3
Duong, T., Beck, G., Azzag, H., Lebbah, M.: Nearest neighbour estimators of density derivatives, with application to mean shift clustering. Pattern Recogn. Lett. 80, 224–230 (2016). https://doi.org/10.1016/j.patrec.2016.06.021
Fukunaga, K., Hostetler, L.: Optimization of \(k\)-nearest-neighbor density estimates. IEEE Trans. Inform. Theory 19, 320–326 (1973)
Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE T. Inform. Theory 21, 32–40 (1975). https://doi.org/10.1109/TIT.1975.1055330
Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950). https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
Huang, Z.: Clustering large data sets with mixed numeric and categorical values. In: The First Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 21–34 (1997)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)
Lebbah, M., Badran, F., Thiria, S.: Topological map for binary data. In: ESANN 2000, 8th European Symposium on Artificial Neural Networks, Bruges, Belgium, 26–28 April 2000, Proceedings, pp. 267–272 (2000)
Leisch, F., Weingessel, A., Dimitriadou, E.: Competitive learning for binary valued data. In: Niklasson, L., Bodén, M., Ziemke, T. (eds.) ICANN 1998. PNC, pp. 779–784. Springer, London (1998). https://doi.org/10.1007/978-1-4471-1599-1_120
Li, T.: A unified view on clustering binary data. Mach. Learn. 62, 199–215 (2006). https://doi.org/10.1007/s10994-005-5316-9
Loftsgaarden, D.O., Quesenberry, C.P.: A nonparametric estimate of a multivariate density function. Ann. Math. Statist. 36, 1049–1051 (1965). https://doi.org/10.1214/aoms/1177700079
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of California Press, Berkeley, USA (1967). https://projecteuclid.org/euclid.bsmsp/1200512992
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Beck, G., Lebbah, M., Azzag, H., Duong, T. (2021). A New Nearest Neighbor Median Shift Clustering for Binary Data. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12895. Springer, Cham. https://doi.org/10.1007/978-3-030-86383-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-86383-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86382-1
Online ISBN: 978-3-030-86383-8
eBook Packages: Computer ScienceComputer Science (R0)