Abstract
Grammatical error correction (GEC) task aims to detect and correct grammatical errors in sentences. Recently, the pre-trained language model has provided a strong baseline for GEC and achieved excellent results by fine-tuning on a small amount of annotated data. However, due to the lack of large-scale erroneous-corrected parallel datasets, these models tend to suffer from the problem of overfitting. Previous researchers have proposed a variety of data augmentation methods to generate more training data and enlarge the dataset, but these methods either rely on rules to generate grammatical errors and are not automated, or produce errors that do not match human writing errors. The pre-trained model only improves significantly after task-specific data fine-tuning; otherwise, the highly noisy data can impair the performance of the pre-trained model. To address this issue, we propose a method to enhance the robustness of the model based on adversarial training. This approach constructs the adversarial samples and treats them as the augmented data. Unlike previous methods that introduce token-level noise, our method introduces embedding-level noise and can obtain extra samples that are close to human writing errors. Besides, we employ the adversarial consistency constraint to reduce the gap between the adversarial sample and the original sample. The experimental results demonstrate that our method can further boost the performance of the pre-trained model on GEC task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Awasthi, A., Sarawagi, S., Goyal, R., Ghosh, S., Piratla, V.: Parallel iterative edit models for local sequence transduction. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1435
Bryant, C., Felice, M., Andersen, Ø.E., Briscoe, T.: The BEA-2019 shared task on grammatical error correction, pp. 52–75. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/w19-4406
Bryant, C., Felice, M., Briscoe, T.: Automatic annotation and evaluation of error types for grammatical error correction. In: Barzilay, R., Kan, M. (eds.) ACL 2017, pp. 793–805. Association for Computational Linguistics (2017)
Chollampatt, S., Ng, H.T.: A Multilayer Convolutional Encoder-decoder Neural Network for Grammatical Error Correction, pp. 5755–5762. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
Chollampatt, S., Taghipour, K., Ng, H.T.: Neural Network Translation Models for Grammatical Error Correction, pp. 2768–2774. IJCAI/AAAI Press (2016). http://www.ijcai.org/Abstract/16/393
Dahlmeier, D., Ng, H.T.: Better evaluation for grammatical error correction. The Association for Computational Linguistics (2012). https://www.aclweb.org/anthology/N12-1067/
Dahlmeier, D., Ng, H.T., Wu, S.M.: Building a large annotated corpus of learner English: the NUS corpus of learner English, pp. 22–31. The Association for Computer Linguistics (2013). https://www.aclweb.org/anthology/W13-1703/
De Felice, R., Pulman, S.: A classifier-based approach to preposition and determiner error correction in L2 English. In: Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008), pp. 169–176 (2008)
Felice, M., Bryant, C., Briscoe, T.: Automatic extraction of learner errors in ESL sentences using linguistically enhanced alignments. In: Calzolari, N., Matsumoto, Y., Prasad, R. (eds.) COLING 2016. pp. 825–835. ACL (2016)
Ge, T., Wei, F., Zhou, M.: Fluency boost learning and inference for neural grammatical error correction, pp. 1055–1065. Association for Computational Linguistics (2018). https://www.aclweb.org/anthology/P18-1097/
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2015). http://arxiv.org/abs/1412.6572
Grundkiewicz, R., Junczys-Dowmunt, M., Heafield, K.: Neural grammatical error correction systems with unsupervised pre-training on synthetic data, pp. 252–263. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/w19-4427
Junczys-Dowmunt, M., Grundkiewicz, R.: Phrase-based machine translation is state-of-the-art for automatic grammatical error correction, pp. 1546–1556. The Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/d16-1161
Junczys-Dowmunt, M., Grundkiewicz, R., Guha, S., Heafield, K.: Approaching neural grammatical error correction as a low-resource machine translation task, pp. 595–606. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-1055
Kaneko, M., Mita, M., Kiyono, S., Suzuki, J., Inui, K.: Encoder-decoder models can benefit from pre-trained masked language models in grammatical error correction, pp. 4248–4254. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.391
Katsumata, S., Komachi, M.: Stronger baselines for grammatical error correction using a pretrained encoder-decoder model, pp. 827–832. Association for Computational Linguistics (2020). https://www.aclweb.org/anthology/2020.aacl-main.83/
Kiyono, S., Suzuki, J., Mita, M., Mizumoto, T., Inui, K.: An empirical study of incorporating pseudo data into grammatical error correction, pp. 1236–1242. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1119
Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension, pp. 7871–7880 (2020). https://doi.org/10.18653/v1/2020.acl-main.703
Lichtarge, J., Alberti, C., Kumar, S.: Data weighted training strategies for grammatical error correction. Trans. Assoc. Comput. Ling. 8, 634–646 (2020). https://transacl.org/ojs/index.php/tacl/article/view/2047
Liu, X., et al.: Adversarial training for large neural language models. CoRR abs/2004.08994 (2020). https://arxiv.org/abs/2004.08994
Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR abs/1711.05101 (2017). http://arxiv.org/abs/1711.05101
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. OpenReview.net (2018). https://openreview.net/forum?id=rJzIBfZAb
Malmi, E., Krause, S., Rothe, S., Mirylenka, D., Severyn, A.: Encode, tag, realize: High-precision text editing, pp. 5053–5064. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1510
Mita, M., Kiyono, S., Kaneko, M., Suzuki, J., Inui, K.: A self-refinement strategy for noise reduction in grammatical error correction, pp. 267–280. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.26
Miyato, T., Dai, A.M., Goodfellow, I.J.: Adversarial training methods for semi-supervised text classification. OpenReview.net (2017). https://openreview.net/forum?id=r1X3g2_xl
Naber, D., et al.: A rule-based style and grammar checker (2003)
Omelianchuk, K., Atrasevych, V., Chernodub, A.N., Skurzhanskyi, O.: Gector - grammatical error correction: tag, not rewrite, pp. 163–170. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.bea-1.16
Sato, M., Suzuki, J., Kiyono, S.: Effective adversarial regularization for neural machine translation, pp. 204–210. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1020
Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: ACL 2016. The Association for Computer Linguistics (2016)
Tajiri, T., Komachi, M., Matsumoto, Y.: Tense and aspect error correction for ESL learners using global context, pp. 198–202. The Association for Computer Linguistics (2012). https://www.aclweb.org/anthology/P12-2039/
Wang, D., Gong, C., Liu, Q.: Improving neural language modeling via adversarial training, vol. 97, pp. 6555–6565. PMLR (2019). http://proceedings.mlr.press/v97/wang19f.html
Wang, L., Zheng, X.: Improving grammatical error correction models with purpose-built adversarial examples. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) EMNLP 2020, pp. 2858–2869. Association for Computational Linguistics (2020)
Wang, Y., Wang, Y., Liu, J., Liu, Z.: A comprehensive survey of grammar error correction. arXiv preprint arXiv:2005.06600 (2020)
Yannakoudakis, H., Andersen, Ø.E., Geranpayeh, A., Briscoe, T., Nicholls, D.: Developing an automated writing placement system for ESL learners. Appl. Measur. Educ. 31(3), 251–267 (2018)
Yannakoudakis, H., Briscoe, T., Medlock, B.: A new dataset and method for automatically grading ESOL texts, pp. 180–189. The Association for Computer Linguistics (2011). https://www.aclweb.org/anthology/P11-1019/
Yuan, Z., Briscoe, T.: Grammatical error correction using neural machine translation. The Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/n16-1042
Zhao, W., Wang, L., Shen, K., Jia, R., Liu, J.: Improving grammatical error correction via pre-training a copy-augmented architecture with unlabeled data, pp. 156–165. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1014
Zhao, Z., Wang, H.: MaskGEC: improving neural grammatical error correction via dynamic masking, pp. 1226–1233. AAAI Press (2020). https://aaai.org/ojs/index.php/AAAI/article/view/5476
Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., Liu, J.: FreeLB: enhanced adversarial training for natural language understanding. OpenReview.net (2020). https://openreview.net/forum?id=BygzbyHFvB
Acknowledgments
This research is supported by the National Natural Science Foundation of China under the grant [No. 61976119] and the Natural Science Foundation of Tianjin under the grant [No. 18ZXZNGX00310].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dang, K., Xie, J., Liu, J. (2021). Leveraging Adversarial Training to Facilitate Grammatical Error Correction. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2021. ICANN 2021. Lecture Notes in Computer Science(), vol 12891. Springer, Cham. https://doi.org/10.1007/978-3-030-86362-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-86362-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86361-6
Online ISBN: 978-3-030-86362-3
eBook Packages: Computer ScienceComputer Science (R0)