Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards an IMU-based Pen Online Handwriting Recognizer

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 (ICDAR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12823))

Included in the following conference series:

Abstract

Most online handwriting recognition systems require the use of specific writing surfaces to extract positional data. In this paper we present a online handwriting recognition system for word recognition which is based on inertial measurement units (IMUs) for digitizing text written on paper. This is obtained by means of a sensor-equipped pen that provides acceleration, angular velocity, and magnetic forces streamed via Bluetooth. Our model combines convolutional and bidirectional LSTM networks, and is trained with the Connectionist Temporal Classification loss that allows the interpretation of raw sensor data into words without the need of sequence segmentation. We use a dataset of words collected using multiple sensor-enhanced pens and evaluate our model on distinct test sets of seen and unseen words achieving a character error rate of 17.97% and 17.08%, respectively, without the use of a dictionary or language model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The digipen devkit. https://stabilodigital.com/devkit-demoapp-introduction/. Accessed 30 Jan 2021

  2. The digipen hardware. https://stabilodigital.com/sensors-2021/. Accessed 30 Jan 2021

  3. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

    Google Scholar 

  4. Abd Alshafy, H.A., Mustafa, M.E.: Hmm based approach for online Arabic handwriting recognition. In: 2014 14th International Conference on Intelligent Systems Design and Applications, pp. 211–215. IEEE (2014)

    Google Scholar 

  5. Amma, C., Georgi, M., Schultz, T.: Airwriting: hands-free mobile text input by spotting and continuous recognition of 3d-space handwriting with inertial sensors. In: 2012 16th International Symposium on Wearable Computers, pp. 52–59. IEEE (2012)

    Google Scholar 

  6. Bengio, Y., LeCun, Y., Nohl, C., Burges, C.: LEREC: a NN/HMM hybrid for on-line handwriting recognition. Neural Comput. 7(6), 1289–1303 (1995)

    Article  Google Scholar 

  7. Bersch, S.D., Azzi, D., Khusainov, R., Achumba, I.E., Ries, J.: Sensor data acquisition and processing parameters for human activity classification. Sensors 14(3), 4239–4270 (2014)

    Article  Google Scholar 

  8. Carbune, V., et al.: Fast multi-language LSTM-based online handwriting recognition. In: International Journal on Document Analysis and Recognition (IJDAR), pp. 1–14 (2020)

    Google Scholar 

  9. Chollet, F., et al.: Keras (2015). https://keras.io

  10. Feng, Y., Zhang, Y., Xu, X.: End-to-end speech recognition system based on improved CLDNN structure. In: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 538–542. IEEE (2019)

    Google Scholar 

  11. Gan, J., Wang, W.: In-air handwritten English word recognition using attention recurrent translator. Neural Comput. Appl. 31(7), 3155–3172 (2019)

    Article  Google Scholar 

  12. Gan, J., Wang, W., Lu, K.: A unified CNN-RNN approach for in-air handwritten English word recognition. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

    Google Scholar 

  13. Gerth, S., et al.: Is handwriting performance affected by the writing surface? comparing tablet vs. paper. Frontiers in psychology 7 (2016)

    Google Scholar 

  14. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  15. Graves, A., Fernández, S., Liwicki, M., Bunke, H., Schmidhuber, J.: Unconstrained online handwriting recognition with recurrent neural networks. In: Advances in Neural Information Processing Systems 20, NIPS 2008 (2008)

    Google Scholar 

  16. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2008)

    Article  Google Scholar 

  17. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  18. Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., Janet, S.: Unipen project of on-line data exchange and recognizer benchmarks. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3-Conference C: Signal Processing (Cat. No. 94CH3440-5), vol. 2, pp. 29–33. IEEE (1994)

    Google Scholar 

  19. Halder, A., Ramakrishnan, A.: Time delay neural networks for online handwriting recognition, June 2007. https://doi.org/10.13140/RG.2.2.25975.52641

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  21. Jaeger, S., Manke, S., Reichert, J., Waibel, A.: Online handwriting recognition: the NPEN++ recognizer. Int. J. Doc. Anal. Recogn. 3(3), 169–180 (2001)

    Article  Google Scholar 

  22. Jäger, S., Liu, C.L., Nakagawa, M.: The state of the art in Japanese online handwriting recognition compared to techniques in western handwriting recognition. Doc. Anal. Recogn. 6(2), 75–88 (2003)

    Article  Google Scholar 

  23. Jeen-Shing, W., Yu-Liang, H., Cheng-Ling, C.: Online handwriting recognition using an accelerometer-based pen device. In: 2nd International Conference on Advances in Computer Science and Engineering (CSE 2013), pp. 231–234. Atlantis Press (2013)

    Google Scholar 

  24. Keysers, D., Deselaers, T., Rowley, H.A., Wang, L.L., Carbune, V.: Multi-language online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1180–1194 (2016)

    Article  Google Scholar 

  25. Kim, J.H., Sin, B.-K.: Online handwriting recognition. In: Doermann, D., Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp. 887–915. Springer, London (2014). https://doi.org/10.1007/978-0-85729-859-1_29

    Chapter  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. Koellner, C., Kurz, M., Sonnleitner, E.: What did you mean? an evaluation of online character recognition approaches. In: 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1–6. IEEE (2019)

    Google Scholar 

  28. Liu, C.L., Jaeger, S., Nakagawa, M.: ’online recognition of Chinese characters: the state-of-the-art. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 198–213 (2004)

    Article  Google Scholar 

  29. Liu, Z.T., Wong, D.P., Chou, P.H.: An IMU-based wearable ring for on-surface handwriting recognition. In: 2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–4. IEEE (2020)

    Google Scholar 

  30. Liwicki, M., Bunke, H.: IAM-ONDB-an on-line English sentence database acquired from handwritten text on a whiteboard. In: Eighth International Conference on Document Analysis and Recognition (ICDAR 2005), pp. 956–961. IEEE (2005)

    Google Scholar 

  31. Liwicki, M., Bunke, H., Pittman, J.A., Knerr, S.: Combining diverse systems for handwritten text line recognition. Mach. Vis. Appl. 22(1), 39–51 (2011)

    Article  Google Scholar 

  32. Liwicki, M., Graves, A., Fernàndez, S., Bunke, H., Schmidhuber, J.: A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks. In: Proceedings of the 9th International Conference on Document Analysis and Recognition, ICDAR 2007 (2007)

    Google Scholar 

  33. Mandal, S., Prasanna, S.M., Sundaram, S.: Exploration of CNN features for online handwriting recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 831–836. IEEE (2019)

    Google Scholar 

  34. Musa, M.E.: Towards building standard datasets for Arabic recognition. Int. J. Eng. Adv. Res. Technol. (IJEART) 2(2), 16–19 (2016)

    Google Scholar 

  35. Ott, F., Wehbi, M., Hamann, T., Barth, J., Eskofier, B., Mutschler, C.: The onhw dataset: Online handwriting recognition from imu-enhanced ballpoint pens with machine learning. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 3, pp. 1–20 (2020)

    Google Scholar 

  36. Palacios, R., Gupta, A., Wang, P.S.: Handwritten bank check recognition of courtesy amounts. Int. J. Image Graphics 4(02), 203–222 (2004)

    Article  Google Scholar 

  37. Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)

    Article  Google Scholar 

  38. Priya, A., Mishra, S., Raj, S., Mandal, S., Datta, S.: Online and offline character recognition: a survey. In: 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 0967–0970. IEEE (2016)

    Google Scholar 

  39. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4580–4584. IEEE (2015)

    Google Scholar 

  40. Schrapel, M., Stadler, M.L., Rohs, M.: Pentelligence: Combining pen tip motion and writing sounds for handwritten digit recognition. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2018)

    Google Scholar 

  41. Shaikh Jahidabegum, K.: Character recognition system for text entry using inertial pen. Int. J. Sci. Eng. Technol. Res. (IJSETR) 4 (2015)

    Google Scholar 

  42. Singh, A., Bacchuwar, K., Bhasin, A.: A survey of OCR applications. Int. J. Mach. Learn. Comput. 2(3), 314 (2012)

    Article  Google Scholar 

  43. Srihari, S.N.: Recognition of handwritten and machine-printed text for postal address interpretation. Pattern Recogn. Lett. 14(4), 291–302 (1993)

    Article  Google Scholar 

  44. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Tlemsani, R., Belbachir, K.: An improved Arabic on-line characters recognition system. In: 2018 International Arab Conference on Information Technology (ACIT), pp. 1–10. IEEE (2018)

    Google Scholar 

  46. Wang, J.S., Chuang, F.C.: An accelerometer-based digital pen with a trajectory recognition algorithm for handwritten digit and gesture recognition. IEEE Trans. Industr. Electron. 59(7), 2998–3007 (2011)

    Article  Google Scholar 

  47. Wehbi, M., Hamann, T., Barth, J., Eskofier, B.: Digitizing handwriting with a sensor pen: a writer-independent recognizer. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR),pp. 295–300. IEEE (2020)

    Google Scholar 

  48. Yaeger, L.S., Webb, B.J., Lyon, R.F.: Combining neural networks and context-driven search for online, printed handwriting recognition in the newton. AI Mag. 19(1), 73–73 (1998)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie as part of the EINNS project (Entwicklung Intelligenter Neuronaler Netze zur Schrifterkennung) (grant number IUK-1902-0005 // IUK606/002). Bjoern Eskofier gratefully acknowledges the support of the German Research Foundation (DFG) within the framework of the Heisenberg professorship program (grant number ES 434/8-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Wehbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wehbi, M., Hamann, T., Barth, J., Kaempf, P., Zanca, D., Eskofier, B. (2021). Towards an IMU-based Pen Online Handwriting Recognizer. In: Lladós, J., Lopresti, D., Uchida, S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science(), vol 12823. Springer, Cham. https://doi.org/10.1007/978-3-030-86334-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86334-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86333-3

  • Online ISBN: 978-3-030-86334-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics