Abstract
Tinnitus is an annoying ringing in the ears, in varying shades and intensities. Tinnitus can affect a patient’s overall health and social well-being. The diagnostic procedure of tinnitus usually consists of three steps: an audiological examination, psychoacoustic measurement, and a disability evaluation. The authors recently started a project whose aim is to provide a low-cost device and an app to patients, supporting the self-management of tinnitus. In this short paper, we report on the study finalised to evaluate the improved design of the acufenometry examination (i.e., the identification of the frequency and intensity of the tinnitus). By measuring the task with the Single-Ease Question metric, the average rating increased from 2.86/5 for the first implementation, to 3.96/5 for the re-design and re-implementation (\(p=0.0005\)). The results show that the perceived usability of the acufenometry task actually improved from the initial implementation to the new one.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Unused for the acufenometry, the device is equipped with both air and bone transducers, which are instead essential for the pure tone audiometry testing.
- 2.
We preferred a non-parametric test instead of the parametric t-test because both EM and SEQ are qualitative measures, even if numerically expressed in a Likert-scale ranging from 1 to 5.
References
Albert, W., Dixon, E.: Is this what you expected? The use of expectation measures in usability testing. In: Proceedings of the Usability Professionals Association 2003 Conference. Scottsdale, AZ (2003)
American Tinnitus Association: Impact of Tinnitus (2019). https://www.ata.org/understanding-facts/impact-tinnitus
Bath, P.A.: Health informatics: current issues and challenges. J. Inf. Sci. 34(4), 501–518 (2008)
Hoekstra, C., Venekamp, R., van Zanten, B.: Tinnitus. Huisarts en wetenschap 58(10), 548–551 (2015). https://doi.org/10.1007/s12445-015-0287-y
Bright, T., Pallawela, D.: Validated smartphone-based apps for ear and hearing assessments: a review. JMIR Rehabil. Assist. Technol. 3(2), e13 (2016). /pmc/articles/PMC5454564//pmc/articles/PMC5454564/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454564/
Pablo, C., Fernando, D.L.P., Alberto, E., Angelo, T., Pierpaolo, V.: An app supporting the self-management of tinnitus. In: Fdez-Riverola, F., Mohamad, M.S., Rocha, M., De Paz, J.F., Pinto, T. (eds.) 11th International Conference on Practical Applications of Computational Biology and Bioinformatics. PACBB 2017. AISC, vol. 616, pp. 83–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60816-7_11
Chamoso, P., De La Prieta, F., Eibenstein, A., Santos-Santos, D., Tizio, A., Vittorini, P.: A Device Supporting the Self Management of Tinnitus. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017. LNCS, vol. 10209, pp. 399–410. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56154-7_36
He, J., Baxter, S.L., Xu, J., Xu, J., Zhou, X., Zhang, K.: The practical implementation of artificial intelligence technologies in medicine (2019). https://doi.org/10.1038/s41591-018-0307-0
Henry, J.A.: “Measurement” of Tinnitus. Otol. Neurotol. 37(8), e276–e285 (2016). http://journals.lww.com/00129492-201609000-00043
Henry, J.A., et al.: Development and field testing of a smartphone “App” for tinnitus management. Int. J. Audiol. 56(10), 784–792 (2017). https://pubmed.ncbi.nlm.nih.gov/28669224/
Inventis: Homepage — Inventis (2021). https://www.inventis.it/
Lancia, L., Pisegna Cerone, M., Vittorini, P., Romano, S., Penco, M.: A comparison between EASI system 12-lead ECGs and standard 12-lead ECGs for improved clinical nursing practice. J. Clin. Nurs. 17(3), 370–377 (2008)
Laubheimer, P.: Input Controls for Parameters: Balancing Exploration and Precision with Sliders, Knobs, and Matrices. Nielsen Norman Group, New York (2017)
McCormack, A., Edmondson-Jones, M., Somerset, S., Hall, D.: A systematic review of the reporting of tinnitus prevalence and severity (2016). https://pubmed.ncbi.nlm.nih.gov/27246985/
Moring, J., Bowen, A., Thomas, J., Bira, L.: The emotional and functional impact of the type of tinnitus sensation. J. Clin. Psychol. Med. Settings 23(3), 310–318 (2015). https://doi.org/10.1007/s10880-015-9444-5
Paglialonga, A., Tognola, G., Pinciroli, F.: Apps for hearing science and care. Am. J. Audiol. 24(3), 293–298 (2015). https://pubmed.ncbi.nlm.nih.gov/26649533/
Penner, M.J., Bilger, R.C.: Consistent within-session measures of tinnitus. J. Speech Hearing Res. 35(3), 694–700 (1992). https://pubmed.ncbi.nlm.nih.gov/1608262/
Probst, T., Pryss, R., Langguth, B., Schlee, W.: Emotion dynamics and tinnitus: Daily life data from the “trackYourTinnitus” application. Sci. Rep. 6, 1–9 (2016). https://pubmed.ncbi.nlm.nih.gov/27488227/
Probst, T., Pryss, R., Langguth, B., Schlee, W.: Emotional states as mediators between tinnitus loudness and tinnitus distress in daily life: results from the “trackYourTinnitus” application. Sci. Rep. 6, 1–8 (2016). https://pubmed.ncbi.nlm.nih.gov/26853815/
Probst, T., et al.: Does tinnitus depend on time-of-day? An ecological momentary assessment study with the “TrackYourTinnitus” application. Front. Aging Neurosci. 9, 253 (2017). https://pubmed.ncbi.nlm.nih.gov/28824415/
R Core Team: R: A Language and Environment for Statistical Computing (2018). https://www.R-project.org/
Riffenburgh, R.H.: Statistics in Medicine. Elsevier/Academic Press, New York (2012)
Sauro, J., Dumas, J.S.: Comparison of three one-question, post-task usability questionnaires. In: Conference on Human Factors in Computing Systems - Proceedings, pp. 1599–1608. ACM Press, New York, New York, USA (2009). http://dl.acm.org/citation.cfm?doid=1518701.1518946
Schlee, W., et al.: Measuring the moment-to-moment variability of Tinnitus: the TrackYourTinnitus smart phone app. Front. Aging Neurosci. 8, 294 (2016). https://pubmed.ncbi.nlm.nih.gov/28018210/
SHOEBOX Ltd: Accurate and Boothless Audiometric Testing (2021). https://www.shoebox.md/
Tullis, T., Albert, W.: Measuring the User Experience : Collecting, Analyzing, and Presenting Usability Metrics. Elsevier, New York (2013)
Vittorini, P., Tarquinio, A., di Orio, F.: XML technologies for the Omaha system: a data model, a Java tool and several case studies supporting home healthcare. Comput. Methods Programs Biomed. 93(3), 297–319 (2009)
Yamin, M.: IT applications in healthcare management: a survey. Int. J. Inf. Technol. 10(4), 503–509 (2018). https://doi.org/10.1007/s41870-018-0203-3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vittorini, P., Chamoso, P., De la Prieta, F. (2022). Acufenometry in the Self-management of Tinnitus: A Revised Interface to Improve the User Experience. In: Rocha, M., Fdez-Riverola, F., Mohamad, M.S., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioinformatics, 15th International Conference (PACBB 2021). PACBB 2021. Lecture Notes in Networks and Systems, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-86258-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-86258-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86257-2
Online ISBN: 978-3-030-86258-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)