Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cloud Based Decision Making for Multi-agent Production Systems

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2021)

Abstract

The use of multi-agent systems (MAS) as a distributed control method for shop-floor manufacturing control applications has been extensively researched. MAS provides new implementation solutions for smart manufacturing requirements such as the high dynamism and flexibility required in modern manufacturing applications. MAS in smart manufacturing is becoming increasingly important to achieve increased automation of machines and other components. Emerging technologies like artificial intelligence, cloud-based infrastructures, and cloud computing can also provide systems with intelligent, autonomous, and more scalable solutions. In the current work, a decision-making framework is proposed based on the combination of MAS cloud computing, agent technology, and machine learning. The framework is demonstrated in a quality control use case with vision inspection and agent-based control. The experiment utilizes a cloud-based machine learning pipeline for part classification and agent technology for routing. The results show the applicability of the framework in real-world scenarios bridging cloud service-oriented architecture with agent technology for production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Onori, M., Barata, J.: Evolvable production systems: new domains within mechatronic production equipment. In: 2010 IEEE International Symposium on Industrial Electronics, pp. 2653–2657. IEEE (2010)

    Google Scholar 

  2. Tharumarajah, A.: Comparison of the bionic, fractal and holonic manufacturing system concepts. Int. J. Comput. Integr. Manuf. 9(3), 217–226 (1996)

    Article  Google Scholar 

  3. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: prosa. Comput. Ind. 37(3), 255–274 (1998)

    Article  Google Scholar 

  4. Bi, Z.M., Lang, S.Y., Shen, W., Wang, L.: Reconfigurable manufacturing systems: the state of the art. Int. J. Prod. Res. 46(4), 967–992 (2008)

    Article  Google Scholar 

  5. Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016)

    Article  Google Scholar 

  6. Wang, L., Du, Z., Dong, W., Shen, Y., Zhao, G.: Hierarchical human machine interaction learning for a lower extremity augmentation device. Int. J. Soc. Robot. 11(1), 123–139 (2019)

    Article  Google Scholar 

  7. Wu, D., Zhang, Y., Ourak, M., Niu, K., Dankelman, J., Vander Poorten, E.B.: Hysteresis modeling of robotic catheters based on long short-term memory network for improved environment reconstruction. IEEE Robot. Autom. Lett. 6(2), 2106–2113 (2021)

    Google Scholar 

  8. Torayev, A., Schultz, T.: Interactive classification of multi-shell diffusion MRI with features from a dual-branch CNN autoencoder. In: EG Workshop on Visual Computing for Biology and Medicine (2020)

    Google Scholar 

  9. Tang, T., Hu, T., Chen, M., Lin, R., Chen, G.: A deep convolutional neural network approach with information fusion for bearing fault diagnosis under different working conditions. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 0954406220902181 (2020)

    Google Scholar 

  10. Vincent Wang, X., Xu, X.W.: An interoperable solution for cloud manufacturing. Robot. Comput.-Integr. Manuf. 29(4), 232–247 (2013)

    Article  Google Scholar 

  11. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2009)

    Google Scholar 

  12. Bond, A.H., Gasser, L.: Readings in Distributed Artificial Intelligence. Morgan Kaufmann (2014)

    Google Scholar 

  13. Botti, V., Omicini, A., Mariani, S., Julian, V.: Multi-agent Systems. MDPI-Multidisciplinary Digital Publishing Institute (2019)

    Google Scholar 

  14. Adeyeri, M.K., Mpofu, K., Olukorede, T.A.: Integration of agent technology into manufacturing enterprise: a review and platform for industry 4.0. In: 2015 International Conference on Industrial Engineering and Operations Management (IEOM), pp. 1–10. IEEE (2015)

    Google Scholar 

  15. Li, Z., Jiang, X., Yao, S., Li, D.: Research on collaborative control method of manufacturing process based on distributed multi-agent cooperation. In: 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol. 2, pp. 41–46. IEEE (2018)

    Google Scholar 

  16. Li, D., Jiang, X., Wei, X.: Research on manufacturing process control based on multi-agent-system. In: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 1306–1309. IEEE (2018)

    Google Scholar 

  17. Răileanu, S., Borangiu, T., Morariu, O.: Multi-agent solution for automated part supply in robotized holonic manufacturing. In: Rodić, A., Borangiu, T. (eds.) RAAD 2016. AISC, vol. 540, pp. 211–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49058-8_23

    Chapter  Google Scholar 

  18. Vatankhah Barenji, A., Vatankhah Barenji, R.: Improving multi-agent manufacturing control system by indirect communication based on ant agents. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 231(6), 447–458 (2017)

    Google Scholar 

  19. Gwiazda, A., Sękala, A., Banaś, W.: Modeling of a production system using the multi-agent approach. In: IOP Conference Series: Materials Science and Engineering, vol. 227, p. 012052. IOP Publishing (2017)

    Google Scholar 

  20. Blesing, C., Luensch, D., Stenzel, J., Korth, B.: Concept of a multi-agent based decentralized production system for the automotive industry. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 19–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59930-4_2

    Chapter  Google Scholar 

  21. Büth, L., Broderius, N., Herrmann, C., Thiede, S.: Introducing agent-based simulation of manufacturing systems to industrial discrete-event simulation tools. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 1141–1146. IEEE (2017)

    Google Scholar 

  22. Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.: Smart agents in industrial cyber-physical systems. Proc. IEEE 104(5), 1086–1101 (2016)

    Article  Google Scholar 

  23. Barata, J., Camarinha-Matos, L.M.: Coalitions of manufacturing components for shop floor agility-the Cobasa architecture. Int. J. Networking Virtual Organ. 2(1), 50–77 (2003)

    Article  Google Scholar 

  24. Peres, R.S., Rocha, A.D., Leitao, P., Barata, J.: Idarts-towards intelligent data analysis and real-time supervision for industry 4.0. Comput. Ind. 101, 138–146 (2018)

    Google Scholar 

  25. Rocha, A.D., Peres, R.S., Flores, L., Barata, J.: A multiagent based knowledge extraction framework to support plug and produce capabilities in manufacturing monitoring systems. In: 2015 10th International Symposium on Mechatronics and its Applications (ISMA), pp. 1–5. IEEE (2015)

    Google Scholar 

  26. Baer, S., Bakakeu, J., Meyes, R., Meisen, T.: Multi-agent reinforcement learning for job shop scheduling in flexible manufacturing systems. In: 2019 Second International Conference on Artificial Intelligence for Industries (AI4I), pp. 22–25. IEEE (2019)

    Google Scholar 

  27. Rokhforoz, P., Gjorgiev, B., Sansavini, G., Fink, O.: Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market. arXiv preprint arXiv:2002.12217 (2020)

  28. Xie, X.: A review of recent advances in surface defect detection using texture analysis techniques. ELCVIA: Electronic Letters on Computer Vision and Image Analysis, pp. 1–22 (2008)

    Google Scholar 

  29. Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process. 2014(1), 1–19 (2014). https://doi.org/10.1186/1687-5281-2014-50

    Article  Google Scholar 

  30. Pernkopf, F., O’Leary, P.: Visual inspection of machined metallic high-precision surfaces. EURASIP J. Adv. Signal Process. 2002(7), 1–12 (2002)

    Article  Google Scholar 

  31. Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018)

    Article  Google Scholar 

  32. Wyns, J.: Reference architecture for holonic manufacture: the key to support evolution and reconfiguration. Unpublished PhD thesis, Katholieke Universiteit Leuven, Leuven (1999)

    Google Scholar 

  33. Elsken, T., Metzen, J.H., Hutter, F., et al.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.: Automl for large scale image classification and object detection. Google AI Blog 2, 2017 (2017)

    Google Scholar 

  35. Dabhi, R.: casting product image data for quality inspection. In: https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product (2020)

Download references

Acknowledgement

This work is carried out under DiManD Innovative Training Network (ITN) project funded by the European Union through the Marie Sktodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement number no. 814078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamood Ur Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rehman, H.U. et al. (2021). Cloud Based Decision Making for Multi-agent Production Systems. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86230-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86229-9

  • Online ISBN: 978-3-030-86230-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics