Abstract
The use of multi-agent systems (MAS) as a distributed control method for shop-floor manufacturing control applications has been extensively researched. MAS provides new implementation solutions for smart manufacturing requirements such as the high dynamism and flexibility required in modern manufacturing applications. MAS in smart manufacturing is becoming increasingly important to achieve increased automation of machines and other components. Emerging technologies like artificial intelligence, cloud-based infrastructures, and cloud computing can also provide systems with intelligent, autonomous, and more scalable solutions. In the current work, a decision-making framework is proposed based on the combination of MAS cloud computing, agent technology, and machine learning. The framework is demonstrated in a quality control use case with vision inspection and agent-based control. The experiment utilizes a cloud-based machine learning pipeline for part classification and agent technology for routing. The results show the applicability of the framework in real-world scenarios bridging cloud service-oriented architecture with agent technology for production systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Onori, M., Barata, J.: Evolvable production systems: new domains within mechatronic production equipment. In: 2010 IEEE International Symposium on Industrial Electronics, pp. 2653–2657. IEEE (2010)
Tharumarajah, A.: Comparison of the bionic, fractal and holonic manufacturing system concepts. Int. J. Comput. Integr. Manuf. 9(3), 217–226 (1996)
Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: prosa. Comput. Ind. 37(3), 255–274 (1998)
Bi, Z.M., Lang, S.Y., Shen, W., Wang, L.: Reconfigurable manufacturing systems: the state of the art. Int. J. Prod. Res. 46(4), 967–992 (2008)
Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Comput. Ind. 81, 11–25 (2016)
Wang, L., Du, Z., Dong, W., Shen, Y., Zhao, G.: Hierarchical human machine interaction learning for a lower extremity augmentation device. Int. J. Soc. Robot. 11(1), 123–139 (2019)
Wu, D., Zhang, Y., Ourak, M., Niu, K., Dankelman, J., Vander Poorten, E.B.: Hysteresis modeling of robotic catheters based on long short-term memory network for improved environment reconstruction. IEEE Robot. Autom. Lett. 6(2), 2106–2113 (2021)
Torayev, A., Schultz, T.: Interactive classification of multi-shell diffusion MRI with features from a dual-branch CNN autoencoder. In: EG Workshop on Visual Computing for Biology and Medicine (2020)
Tang, T., Hu, T., Chen, M., Lin, R., Chen, G.: A deep convolutional neural network approach with information fusion for bearing fault diagnosis under different working conditions. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 0954406220902181 (2020)
Vincent Wang, X., Xu, X.W.: An interoperable solution for cloud manufacturing. Robot. Comput.-Integr. Manuf. 29(4), 232–247 (2013)
Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2009)
Bond, A.H., Gasser, L.: Readings in Distributed Artificial Intelligence. Morgan Kaufmann (2014)
Botti, V., Omicini, A., Mariani, S., Julian, V.: Multi-agent Systems. MDPI-Multidisciplinary Digital Publishing Institute (2019)
Adeyeri, M.K., Mpofu, K., Olukorede, T.A.: Integration of agent technology into manufacturing enterprise: a review and platform for industry 4.0. In: 2015 International Conference on Industrial Engineering and Operations Management (IEOM), pp. 1–10. IEEE (2015)
Li, Z., Jiang, X., Yao, S., Li, D.: Research on collaborative control method of manufacturing process based on distributed multi-agent cooperation. In: 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol. 2, pp. 41–46. IEEE (2018)
Li, D., Jiang, X., Wei, X.: Research on manufacturing process control based on multi-agent-system. In: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 1306–1309. IEEE (2018)
Răileanu, S., Borangiu, T., Morariu, O.: Multi-agent solution for automated part supply in robotized holonic manufacturing. In: Rodić, A., Borangiu, T. (eds.) RAAD 2016. AISC, vol. 540, pp. 211–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49058-8_23
Vatankhah Barenji, A., Vatankhah Barenji, R.: Improving multi-agent manufacturing control system by indirect communication based on ant agents. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 231(6), 447–458 (2017)
Gwiazda, A., Sękala, A., Banaś, W.: Modeling of a production system using the multi-agent approach. In: IOP Conference Series: Materials Science and Engineering, vol. 227, p. 012052. IOP Publishing (2017)
Blesing, C., Luensch, D., Stenzel, J., Korth, B.: Concept of a multi-agent based decentralized production system for the automotive industry. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 19–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59930-4_2
Büth, L., Broderius, N., Herrmann, C., Thiede, S.: Introducing agent-based simulation of manufacturing systems to industrial discrete-event simulation tools. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 1141–1146. IEEE (2017)
Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.: Smart agents in industrial cyber-physical systems. Proc. IEEE 104(5), 1086–1101 (2016)
Barata, J., Camarinha-Matos, L.M.: Coalitions of manufacturing components for shop floor agility-the Cobasa architecture. Int. J. Networking Virtual Organ. 2(1), 50–77 (2003)
Peres, R.S., Rocha, A.D., Leitao, P., Barata, J.: Idarts-towards intelligent data analysis and real-time supervision for industry 4.0. Comput. Ind. 101, 138–146 (2018)
Rocha, A.D., Peres, R.S., Flores, L., Barata, J.: A multiagent based knowledge extraction framework to support plug and produce capabilities in manufacturing monitoring systems. In: 2015 10th International Symposium on Mechatronics and its Applications (ISMA), pp. 1–5. IEEE (2015)
Baer, S., Bakakeu, J., Meyes, R., Meisen, T.: Multi-agent reinforcement learning for job shop scheduling in flexible manufacturing systems. In: 2019 Second International Conference on Artificial Intelligence for Industries (AI4I), pp. 22–25. IEEE (2019)
Rokhforoz, P., Gjorgiev, B., Sansavini, G., Fink, O.: Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market. arXiv preprint arXiv:2002.12217 (2020)
Xie, X.: A review of recent advances in surface defect detection using texture analysis techniques. ELCVIA: Electronic Letters on Computer Vision and Image Analysis, pp. 1–22 (2008)
Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process. 2014(1), 1–19 (2014). https://doi.org/10.1186/1687-5281-2014-50
Pernkopf, F., O’Leary, P.: Visual inspection of machined metallic high-precision surfaces. EURASIP J. Adv. Signal Process. 2002(7), 1–12 (2002)
Wang, J., Ma, Y., Zhang, L., Gao, R.X., Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018)
Wyns, J.: Reference architecture for holonic manufacture: the key to support evolution and reconfiguration. Unpublished PhD thesis, Katholieke Universiteit Leuven, Leuven (1999)
Elsken, T., Metzen, J.H., Hutter, F., et al.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.: Automl for large scale image classification and object detection. Google AI Blog 2, 2017 (2017)
Dabhi, R.: casting product image data for quality inspection. In: https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product (2020)
Acknowledgement
This work is carried out under DiManD Innovative Training Network (ITN) project funded by the European Union through the Marie Sktodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement number no. 814078.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rehman, H.U. et al. (2021). Cloud Based Decision Making for Multi-agent Production Systems. In: Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P. (eds) Progress in Artificial Intelligence. EPIA 2021. Lecture Notes in Computer Science(), vol 12981. Springer, Cham. https://doi.org/10.1007/978-3-030-86230-5_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-86230-5_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86229-9
Online ISBN: 978-3-030-86230-5
eBook Packages: Computer ScienceComputer Science (R0)