Abstract
Corrosion circuit mark up in engineering drawings is one of the most crucial tasks performed by engineers. This process is currently done manually, which can result in errors and misinterpretations depending on the person assigned for the task. In this paper, we present a semi-automated framework which allows users to upload an undigitised Piping and Instrumentation Diagram, i.e. without any metadata, so that two key shapes, namely pipe specifications and connection points, can be localised using deep learning. Afterwards, a heuristic process is applied to obtain the text, orient it and read it with minimal error rates. Finally, a user interface allows the engineer to mark up the corrosion sections based on these findings. Experimental validation shows promising accuracy rates on finding the two shapes of interest and enhance the functionality of optical character recognition when reading the text of interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mohammed, M.: Corrosion looping for down stream petroleum plants: An Enigma for RBI Engineers A Perspective from the Review of Mechanical Integrity Systems. AMPP. Corrosion and Monitoring Control (2016)
Moreno-García, C.F., Elyan, E., Jayne, C.: New trends on digitisation of complex engineering drawings. Neural Comput. Appl. 31(6), 1695–1712 (2019)
Howie, C., Kunz, J., Binford, T., Chen, T., Law, K.H.: Computer interpretation of process and instrumentation drawings. Adv. Eng. Softw. 29, 563–570 (1998)
Arroyo, E., Hoernicke, M., Rodríguez, P., Fay, A.: Automatic derivation of qualitative plant simulation models from legacy piping and instrumentation diagrams. Comput. Chem. Eng. 92, 112–132 (2016)
Moreno-García, C.F., Elyan, E., Jayne, C.: Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings. In: Engineering Applications of Neural Networks (EANN), pp. 87–98 (2017)
Sinha, A., Bayer, J., Bukhari, S.S.: Table localization and field value extraction in piping and instrumentation diagram images. In: Graphics Recognition Methods and Applications (GREC), pp. 26–31 (2019)
Mani, S., Haddad, M.A., Constantini, D., Douhard, W., Li, Q., Poirier, L.: Automatic digitization of engineering diagrams using deep learning and graph search. In: Computer Vision and Pattern Recognition (CVPR) (2020)
Yun, D.Y., Seo, S.K., Zahid, U.: Deep neural network for automatic image recognition of engineering diagrams. Appl. Sci. 10, 1–16 (2020)
Sierla, S., Azangoo, M., Fay, A., Vyatkin, V., Papakonstantinou, N.: Integrating 2D and 3D digital plant information towards automatic generation of digital twins. In: 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), pp. 460–467 (2020)
Elyan, E., Jamieson, L., Ali-Gombe, A.: Deep learning for symbols detection and classification in engineering drawings. Neural Netw. 129, 91–102 (2020)
Moreno-García, C.F., Elyan, E.: Digitisation of assets from the oil & gas industry: challenges and opportunities. In: International Conference on Document Analysis and Recognition (ICDARW), pp. 16–19 (2019)
Rica, E., Moreno-García, C.F., Álvarez, S., Serratosa, F.: Reducing human effort in engineering drawing validation. Comput. Ind. 117, 103198 (2020)
Majid, N., Barney Smith, E.H.: Performance comparison of scanner and camera-acquired data for Bangla offline handwriting recognition. In: International Conference on Document Analysis and Recognition Workshops (ICDARW), pp. 31–36 (2019)
Acknowledgements
We would like to thank Innovate UK for funding this research under the Innovation Voucher scheme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Toral, L., Moreno-García, C.F., Elyan, E., Memon, S. (2021). A Deep Learning Digitisation Framework to Mark up Corrosion Circuits in Piping and Instrumentation Diagrams. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12917. Springer, Cham. https://doi.org/10.1007/978-3-030-86159-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-86159-9_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86158-2
Online ISBN: 978-3-030-86159-9
eBook Packages: Computer ScienceComputer Science (R0)