Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Deep Learning Digitisation Framework to Mark up Corrosion Circuits in Piping and Instrumentation Diagrams

  • Conference paper
  • First Online:
Document Analysis and Recognition – ICDAR 2021 Workshops (ICDAR 2021)

Abstract

Corrosion circuit mark up in engineering drawings is one of the most crucial tasks performed by engineers. This process is currently done manually, which can result in errors and misinterpretations depending on the person assigned for the task. In this paper, we present a semi-automated framework which allows users to upload an undigitised Piping and Instrumentation Diagram, i.e. without any metadata, so that two key shapes, namely pipe specifications and connection points, can be localised using deep learning. Afterwards, a heuristic process is applied to obtain the text, orient it and read it with minimal error rates. Finally, a user interface allows the engineer to mark up the corrosion sections based on these findings. Experimental validation shows promising accuracy rates on finding the two shapes of interest and enhance the functionality of optical character recognition when reading the text of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://store.nace.org/corrosion-looping-for-down-stream-petroleum-plants-an-enigma-for-rbi-engineers-a-perspective-from.

  2. 2.

    https://github.com/tesseract-ocr/tesseract.

  3. 3.

    https://github.com/ultralytics/yolov5/releases.

References

  1. Mohammed, M.: Corrosion looping for down stream petroleum plants: An Enigma for RBI Engineers A Perspective from the Review of Mechanical Integrity Systems. AMPP. Corrosion and Monitoring Control (2016)

    Google Scholar 

  2. Moreno-García, C.F., Elyan, E., Jayne, C.: New trends on digitisation of complex engineering drawings. Neural Comput. Appl. 31(6), 1695–1712 (2019)

    Article  Google Scholar 

  3. Howie, C., Kunz, J., Binford, T., Chen, T., Law, K.H.: Computer interpretation of process and instrumentation drawings. Adv. Eng. Softw. 29, 563–570 (1998)

    Article  Google Scholar 

  4. Arroyo, E., Hoernicke, M., Rodríguez, P., Fay, A.: Automatic derivation of qualitative plant simulation models from legacy piping and instrumentation diagrams. Comput. Chem. Eng. 92, 112–132 (2016)

    Article  Google Scholar 

  5. Moreno-García, C.F., Elyan, E., Jayne, C.: Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings. In: Engineering Applications of Neural Networks (EANN), pp. 87–98 (2017)

    Google Scholar 

  6. Sinha, A., Bayer, J., Bukhari, S.S.: Table localization and field value extraction in piping and instrumentation diagram images. In: Graphics Recognition Methods and Applications (GREC), pp. 26–31 (2019)

    Google Scholar 

  7. Mani, S., Haddad, M.A., Constantini, D., Douhard, W., Li, Q., Poirier, L.: Automatic digitization of engineering diagrams using deep learning and graph search. In: Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  8. Yun, D.Y., Seo, S.K., Zahid, U.: Deep neural network for automatic image recognition of engineering diagrams. Appl. Sci. 10, 1–16 (2020)

    Google Scholar 

  9. Sierla, S., Azangoo, M., Fay, A., Vyatkin, V., Papakonstantinou, N.: Integrating 2D and 3D digital plant information towards automatic generation of digital twins. In: 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), pp. 460–467 (2020)

    Google Scholar 

  10. Elyan, E., Jamieson, L., Ali-Gombe, A.: Deep learning for symbols detection and classification in engineering drawings. Neural Netw. 129, 91–102 (2020)

    Article  Google Scholar 

  11. Moreno-García, C.F., Elyan, E.: Digitisation of assets from the oil & gas industry: challenges and opportunities. In: International Conference on Document Analysis and Recognition (ICDARW), pp. 16–19 (2019)

    Google Scholar 

  12. Rica, E., Moreno-García, C.F., Álvarez, S., Serratosa, F.: Reducing human effort in engineering drawing validation. Comput. Ind. 117, 103198 (2020)

    Google Scholar 

  13. Majid, N., Barney Smith, E.H.: Performance comparison of scanner and camera-acquired data for Bangla offline handwriting recognition. In: International Conference on Document Analysis and Recognition Workshops (ICDARW), pp. 31–36 (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Innovate UK for funding this research under the Innovation Voucher scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Francisco Moreno-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toral, L., Moreno-García, C.F., Elyan, E., Memon, S. (2021). A Deep Learning Digitisation Framework to Mark up Corrosion Circuits in Piping and Instrumentation Diagrams. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12917. Springer, Cham. https://doi.org/10.1007/978-3-030-86159-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86159-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86158-2

  • Online ISBN: 978-3-030-86159-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics