Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast Application Activity Recognition with Encrypted Traffic

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12938))

  • 1704 Accesses

Abstract

With the popularity and development of mobile devices, the types and number of mobile applications are increasing, and people will perform different activities in the same application (e.g., refreshing the page, sending messages, browsing). Obtaining network traffic in real-time is an important foundation for network content supervision. Identifying application activity based on network traffic helps network managers understand user behaviors better and improve the quality of service. The widespread use of encrypted traffic in Mobile Applications presents a challenge to accurately identify application activities. Due to the low recognition speed of the existing application action recognition work for encrypted traffic, it is difficult to meet the real-time requirements. Therefore, we propose a fast application activity recognition method based on encrypted traffic. We extract the trend characteristics of the traffic generated by the application activity and use machine learning to identify the activity. The experimental results show that our method can identify user activities effectively. In addition, we have improved the existing method in real-time, and experiments show that our method is two orders of magnitude faster than the existing method when the recognition rate is similar to that of the existing methods.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alan, H.F., Kaur, J.: Can android applications be identified using only TCP/IP headers of their launch time traffic? In: Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, pp. 61–66 (2016)

    Google Scholar 

  2. Ata, S., Iemura, Y., Nakamura, N., Oka, I.: Identification of user behavior from flow statistics. In: 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 42–47. IEEE (2017)

    Google Scholar 

  3. Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Can’t you hear me knocking: identification of user actions on android apps via traffic analysis. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, pp. 297–304 (2015)

    Google Scholar 

  4. Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Analyzing android encrypted network traffic to identify user actions. IEEE Trans. Inf. Forensics Secur. 11(1), 114–125 (2015)

    Article  Google Scholar 

  5. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: NetworkProfiler: towards automatic fingerprinting of android apps. In: 2013 Proceedings IEEE INFOCOM, pp. 809–817. IEEE (2013)

    Google Scholar 

  6. Korczyński, M., Duda, A.: Markov chain fingerprinting to classify encrypted traffic. In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications, pp. 781–789. IEEE (2014)

    Google Scholar 

  7. Kulkarni, R.A.: Scrutinizing action performed by user on mobile app through network using machine learning techniques: a survey. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC), pp. 860–863. IEEE (2018)

    Google Scholar 

  8. Park, K., Kim, H.: Encryption is not enough: inferring user activities on KakaoTalk with traffic analysis. In: Kim, H., Choi, D. (eds.) WISA 2015. LNCS, vol. 9503, pp. 254–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31875-2_21

    Chapter  Google Scholar 

  9. Ranjan, G., Tongaonkar, A., Torres, R.: Approximate matching of persistent lexicon using search-engines for classifying mobile app traffic. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

    Google Scholar 

  10. Saltaformaggio, B., et al.: Eavesdropping on fine-grained user activities within smartphone apps over encrypted network traffic. In: 10th \(\{\)USENIX\(\}\) Workshop on Offensive Technologies (\(\{\)WOOT\(\}\) 16) (2016)

    Google Scholar 

  11. Shen, M., Wei, M., Zhu, L., Wang, M.: Classification of encrypted traffic with second-order Markov chains and application attribute bigrams. IEEE Trans. Inf. Forensics Secur. 12(8), 1830–1843 (2017)

    Article  Google Scholar 

  12. Shen, M., Wei, M., Zhu, L., Wang, M., Li, F.: Certificate-aware encrypted traffic classification using second-order Markov chain. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE (2016)

    Google Scholar 

  13. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: AppScanner: automatic fingerprinting of smartphone apps from encrypted network traffic. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 439–454. IEEE (2016)

    Google Scholar 

  14. Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Robust smartphone app identification via encrypted network traffic analysis. IEEE Trans. Inf. Forensics Secur. 13(1), 63–78 (2017)

    Article  Google Scholar 

  15. Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., Conti, M.: TextDroid: semantics-based detection of mobile malware using network flows. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 18–23. IEEE (2017)

    Google Scholar 

  16. Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 329–344 (2011)

    Google Scholar 

  17. Xu, Q., et al.: Automatic generation of mobile app signatures from traffic observations. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1481–1489. IEEE (2015)

    Google Scholar 

  18. Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., Mao, Z.M.: Samples: self adaptive mining of persistent lexical snippets for classifying mobile application traffic. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 439–451 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by in part by the National Natural Science Foundation of China (Grant Nos. 61772559, 61602167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Zhang, S., Li, H., Wang, W. (2021). Fast Application Activity Recognition with Encrypted Traffic. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12938. Springer, Cham. https://doi.org/10.1007/978-3-030-86130-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86130-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86129-2

  • Online ISBN: 978-3-030-86130-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics