Abstract
Vehicle identity authentication is an important research topic in the field of intelligent transportation. Existing vehicle identity authentication schemes solve the privacy and authentication problem using encryption, but they cannot detect whether a vehicle has malicious behavior while identifying the vehicle. To solve the above problems, a novel vehicle reliable identification scheme based on blockchain oracle is proposed in this paper. The scheme includes a trusted vehicle registration model, a data source reliability model, and an off-blockchain data aggregation model. Specifically, the trusted vehicle registration model divides the registered vehicles into ordinary vehicles and new vehicles. Ordinary vehicles use decentralized oracle technology to combine the on-blockchain smart contract with the off-blockchain real world, while new vehicles are constrained by an additional punishment mechanism. The data source reliability model uses an indicator voting and a resource quantification protocol to ensure the reliability of third-party data sources, and uses (t,n) threshold signature and elliptic curve cryptography (ECC) to guarantee privacy when accessing the information of vehicles and drivers from third-party data sources. The off-blockchain data aggregation model uses multi-attribute analytic hierarchy process to aggregate the third-party data of vehicles and drivers. We implement the scheme in the Solidity Remix integrated development environment and Python environment. The results show that the scheme can effectively guarantee the privacy of vehicles and drivers, and also can achieve credibility, reliability, and fairness.
This research is funded by Special funds for Guangxi BaGui Scholars, National Natural Science Foundation of China under Grant Nos. 62062008 and 62062006, Guangxi Natural Science Foundation under Grant Nos. 2019JJA170045, 2018JJA170194, 2018JJA170028.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Herníndez-Ramos, J., et al.: Toward a lightweight authentication and authorization framework for smart objects. IEEE J. Sel. Areas Commun. 33(4), 690–702 (2015). https://doi.org/10.1109/JSAC.2015.2393436
Hussein, D., Bertin, E., Frey, V.: A community-driven access control approach in distributed IoT environments. IEEE Commun. Mag. 55(3), 146–153 (2017). https://doi.org/10.1109/MCOM.2017.1600611CM
Shen, W., Lu, L., Cao, X., et al.: Cooperative message authentication in vehicular cyber-physical systems. IEEE Trans. Emerg. Top. Comput. 1(1), 84–97 (2013). https://doi.org/10.1109/TETC.2013.2273221
Sultan, A., Mushtaq, M.A., Abubakar, M.: IOT security issues via blockchain: a review paper. In: Proceedings of the 2019 International Conference on Blockchain Technology, ICBCT 2019, pp. 60–65. Association for Computing Machinery, New York, NY, USA (2019)
Alphand, O., Amoretti, M., Claeys, T., et al.: IoTChain: a blockchain security architecture for the Internet of Things. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (2018)
Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: LSB: a lightweight scalable blockchain for IoT security and anonymity. J. Parallel Distrib. Comput. 134, 180–197 (2019). https://doi.org/10.1016/j.jpdc.2019.08.005
Ding, S., Cao, J., Li, C., et al.: A novel attribute-based access control scheme using blockchain for IoT. IEEE Access 7, 38431–38441 (2019). https://doi.org/10.1109/ACCESS.2019.2905846
Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Towards a novel privacy-preserving access control model based on blockchain technology in IoT. In: Rocha, A, Serrhini, M., Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and Communication Technologies. Advances in Intelligent Systems and Computing, vol 520. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46568-5_53
Nandan Mohanty, S., et al.: An efficient lightweight integrated blockchain (ELIB) model for iot security and privacy. Fut. Gener. Comput. Syst. 102, 1027–1037 (2020). https://doi.org/10.1016/j.future.2019.09.050
Yuan, Y., Wang, F.Y.: Current status and prospects of blockchain technology development. Zidonghua Xuebao/Acta Automatica Sinica 42(4), 481–494 (2016). (in Chinese). https://doi.org/10.16383/j.aas.2016.c160158
Makhdoom, I., Abolhasan, M., Abbas, H., et al.: Blockchain’s adoption in IoT: the challenges, and a way forward. J. Netw. Comput. Appl. 125, 251–279 (2019). https://doi.org/10.1016/j.jnca.2018.10.019
Haiwu, H., An, Y., Zehua, C.: Survey of smart contract technology and application based on blockchain. J. Comput. Res. Develop. 55(11), 2452–2466 (2018). (in Chinese)
Kumar, A., Aggarwal, A., Charu: performance analysis of manet using elliptic curve cryptosystem. In: International Conference on Advanced Communication Technology (ICACT) (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Lv, P., Zhang, X., Liu, J., Wei, T., Xu, J. (2021). Blockchain Oracle-Based Privacy Preservation and Reliable Identification for Vehicles. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_54
Download citation
DOI: https://doi.org/10.1007/978-3-030-86137-7_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86136-0
Online ISBN: 978-3-030-86137-7
eBook Packages: Computer ScienceComputer Science (R0)