Nothing Special   »   [go: up one dir, main page]

Skip to main content

Protein Noise and Distribution in a Two-Stage Gene-Expression Model Extended by an mRNA Inactivation Loop

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12881))

Included in the following conference series:

Abstract

Chemical reaction networks involving molecular species at low copy numbers lead to stochasticity in protein levels in gene expression at the single-cell level. Mathematical modelling of this stochastic phenomenon enables us to elucidate the underlying molecular mechanisms quantitatively. Here we present a two-stage stochastic gene expression model that extends the standard model by an mRNA inactivation loop. The extended model exhibits smaller protein noise than the original two-stage model. Interestingly, the fractional reduction of noise is a non-monotonous function of protein stability, and can be substantial especially if the inactivated mRNA is stable. We complement the noise study by an extensive mathematical analysis of the joint steady-state distribution of active and inactive mRNA and protein species. We determine its generating function and derive a recursive formula for the protein distribution. The results of the analytical formula are cross-validated by kinetic Monte-Carlo simulation.

CÇ is supported by the Comenius University grant for doctoral students Nos. UK/106/2020 and UK/100/2021. PB is supported by the Slovak Research and Development Agency under the contract No. APVV-18-0308 and by the VEGA grant 1/0339/21, and the EraCoSysMed project 4D-Healing. AS acknowledges support by ARO W911NF-19-1-0243 and NIH grants R01GM124446 and R01GM126557.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: Gillespy: a python package for stochastic model building and simulation. IEEE Life Sci. Lett. 2, 35–38 (2016). https://doi.org/10.1109/LLS.2017.2652448

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Am. J. Phys. 56(10), 958–958 (1988). https://doi.org/10.1119/1.15378

    Article  Google Scholar 

  3. Bartman, C.R., Hamagami, N., Keller, C.A., Giardine, B., Hardison, R.C., Blobel, G.A., Raj, A.: Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73(3), 519–532 (2019). https://doi.org/10.1016/j.molcel.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  4. Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J. Math. Biol. 64(5), 829–854 (2012). https://doi.org/10.1007/s00285-011-0433-5

    Article  PubMed  Google Scholar 

  5. Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Transcriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expression. Bull. Math. Biol. 75(2), 351–371 (2013). https://doi.org/10.1007/s11538-013-9811-z

    Article  CAS  PubMed  Google Scholar 

  6. Dacheux, E., Malys, N., Meng, X., Ramachandran, V., Mendes, P., McCarthy, J.E.G.: Translation initiation events on structured eukaryotic mRNAs generate gene expression noise. Nucleic Acids Res. 45(11), 6981–6992 (2017). https://doi.org/10.1093/nar/gkx430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002). https://doi.org/10.1126/science.1070919

    Article  CAS  Google Scholar 

  8. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, iv. Springer, Heidelberg (2009). www.springer.com/gp/book/9783540707127

  9. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. John Wiley & Sons, iii edn., Oct 2005. https://doi.org/10.1002/0471715816

  10. Kurasov, P., Mugnolo, D., Wolf, V.: Analytic solutions for stochastic hybrid models of gene regulatory networks. J. Math. Biol. 82(1), 1–29 (2021). https://doi.org/10.1007/s00285-021-01549-7

    Article  Google Scholar 

  11. Li, J., Ge, H., Zhang, Y.: Fluctuating-rate model with multiple gene states. J. Math. Biol. 81(4), 1099–1141 (2020). https://doi.org/10.1007/s00285-020-01538-2

    Article  PubMed  Google Scholar 

  12. Munsky, B., Neuert, G., van Oudenaarden, A.: Using gene expression noise to understand gene regulation. Science 336(6078), 183–187 (2012). https://doi.org/10.1126/science.1216379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418 (2004). https://doi.org/10.1038/nature02257

    Article  CAS  PubMed  Google Scholar 

  14. Peccoud, J., Ycart, B.: Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48(2), 222–234 (1995). https://doi.org/10.1006/tpbi.1995.1027

    Article  Google Scholar 

  15. Pendar, H., Platini, T., Kulkarni, R.V.: Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes. Phys. Rev. E 87(4), 042720 (2013). https://doi.org/10.1103/PhysRevE.87.042720

  16. Raser, J.M., O’Shea, E.K.: Noise in gene expression: origins, consequences, and control. Science 309(5743), 2010–2013 (2005). https://doi.org/10.1126/science.1105891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodríguez Martínez, M., Soriano, J., Tlusty, T., Pilpel, Y., Furman, I.: Messenger RNA fluctuations and regulatory RNAs shape the dynamics of a negative feedback loop. Phys. Rev. E 81(3), 031924 (2010). https://doi.org/10.1103/PhysRevE.81.031924

  18. Sanchez, A., Choubey, S., Kondev, J.: Regulation of noise in gene expression. Annu. Rev. Biophys. 42, 469–491 (2013). https://doi.org/10.1146/annurev-biophys-083012-130401

    Article  CAS  PubMed  Google Scholar 

  19. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics-a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017). https://doi.org/10.1088/1751-8121/aa54d9

  20. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. Presented at the (2008). https://doi.org/10.1073/pnas.0803850105

  21. Singh, A., Hespanha, J.P.: Approximate moment dynamics for chemically reacting systems. IEEE Trans. Autom. Control 56(2), 414–418 (2011). https://doi.org/10.1109/TAC.2010.2088631

    Article  Google Scholar 

  22. Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability in protein levels. Biophys. J . 103(5), 1087–1096 (2012). https://doi.org/10.1016/j.bpj.2012.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, A., Hespanha, J.P.: Stochastic hybrid systems for studying biochemical processes. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 368(1930), 4995–5011 (2010). https://doi.org/10.1098/rsta.2010.0211

    Article  CAS  Google Scholar 

  24. Soltani, M., Vargas-Garcia, C.A., Singh, A.: Conditional moment closure schemes for studying stochastic dynamics of genetic circuits. IEEE Trans. Biomed. Circuits Syst. 9(4), 518–526 (2015). https://doi.org/10.1109/tbcas.2015.2453158

    Article  PubMed  Google Scholar 

  25. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. 99(20), 12795–12800 (2002). https://doi.org/10.1073/pnas.162041399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thattai, M., Oudenaarden, A.v.: Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. 98(15), 8614–8619 (2001). https://doi.org/10.1073/pnas.151588598

  27. Thomas, P.: Intrinsic and extrinsic noise of gene expression in lineage trees. Sci. Rep. 9(1), 474 (2019). https://doi.org/10.1038/s41598-018-35927-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Warren, P.B., Tănase-Nicola, S., ten Wolde, P.R.: Exact results for noise power spectra in linear biochemical reaction networks. J. Chem. Phys. 125(14), 144904 (2006). https://doi.org/10.1063/1.2356472

  29. Zhou, T., Liu, T.: Quantitative analysis of gene expression systems. Quantitative Biol. 3(4), 168–181 (2015). https://doi.org/10.1007/s40484-015-0056-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candan Çelik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Çelik, C., Bokes, P., Singh, A. (2021). Protein Noise and Distribution in a Two-Stage Gene-Expression Model Extended by an mRNA Inactivation Loop. In: Cinquemani, E., Paulevé, L. (eds) Computational Methods in Systems Biology. CMSB 2021. Lecture Notes in Computer Science(), vol 12881. Springer, Cham. https://doi.org/10.1007/978-3-030-85633-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85633-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85632-8

  • Online ISBN: 978-3-030-85633-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics