Abstract
Chemical reaction networks involving molecular species at low copy numbers lead to stochasticity in protein levels in gene expression at the single-cell level. Mathematical modelling of this stochastic phenomenon enables us to elucidate the underlying molecular mechanisms quantitatively. Here we present a two-stage stochastic gene expression model that extends the standard model by an mRNA inactivation loop. The extended model exhibits smaller protein noise than the original two-stage model. Interestingly, the fractional reduction of noise is a non-monotonous function of protein stability, and can be substantial especially if the inactivated mRNA is stable. We complement the noise study by an extensive mathematical analysis of the joint steady-state distribution of active and inactive mRNA and protein species. We determine its generating function and derive a recursive formula for the protein distribution. The results of the analytical formula are cross-validated by kinetic Monte-Carlo simulation.
CÇ is supported by the Comenius University grant for doctoral students Nos. UK/106/2020 and UK/100/2021. PB is supported by the Slovak Research and Development Agency under the contract No. APVV-18-0308 and by the VEGA grant 1/0339/21, and the EraCoSysMed project 4D-Healing. AS acknowledges support by ARO W911NF-19-1-0243 and NIH grants R01GM124446 and R01GM126557.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: Gillespy: a python package for stochastic model building and simulation. IEEE Life Sci. Lett. 2, 35–38 (2016). https://doi.org/10.1109/LLS.2017.2652448
Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Am. J. Phys. 56(10), 958–958 (1988). https://doi.org/10.1119/1.15378
Bartman, C.R., Hamagami, N., Keller, C.A., Giardine, B., Hardison, R.C., Blobel, G.A., Raj, A.: Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73(3), 519–532 (2019). https://doi.org/10.1016/j.molcel.2018.11.004
Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression. J. Math. Biol. 64(5), 829–854 (2012). https://doi.org/10.1007/s00285-011-0433-5
Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Transcriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expression. Bull. Math. Biol. 75(2), 351–371 (2013). https://doi.org/10.1007/s11538-013-9811-z
Dacheux, E., Malys, N., Meng, X., Ramachandran, V., Mendes, P., McCarthy, J.E.G.: Translation initiation events on structured eukaryotic mRNAs generate gene expression noise. Nucleic Acids Res. 45(11), 6981–6992 (2017). https://doi.org/10.1093/nar/gkx430
Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002). https://doi.org/10.1126/science.1070919
Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, iv. Springer, Heidelberg (2009). www.springer.com/gp/book/9783540707127
Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. John Wiley & Sons, iii edn., Oct 2005. https://doi.org/10.1002/0471715816
Kurasov, P., Mugnolo, D., Wolf, V.: Analytic solutions for stochastic hybrid models of gene regulatory networks. J. Math. Biol. 82(1), 1–29 (2021). https://doi.org/10.1007/s00285-021-01549-7
Li, J., Ge, H., Zhang, Y.: Fluctuating-rate model with multiple gene states. J. Math. Biol. 81(4), 1099–1141 (2020). https://doi.org/10.1007/s00285-020-01538-2
Munsky, B., Neuert, G., van Oudenaarden, A.: Using gene expression noise to understand gene regulation. Science 336(6078), 183–187 (2012). https://doi.org/10.1126/science.1216379
Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418 (2004). https://doi.org/10.1038/nature02257
Peccoud, J., Ycart, B.: Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48(2), 222–234 (1995). https://doi.org/10.1006/tpbi.1995.1027
Pendar, H., Platini, T., Kulkarni, R.V.: Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes. Phys. Rev. E 87(4), 042720 (2013). https://doi.org/10.1103/PhysRevE.87.042720
Raser, J.M., O’Shea, E.K.: Noise in gene expression: origins, consequences, and control. Science 309(5743), 2010–2013 (2005). https://doi.org/10.1126/science.1105891
Rodríguez Martínez, M., Soriano, J., Tlusty, T., Pilpel, Y., Furman, I.: Messenger RNA fluctuations and regulatory RNAs shape the dynamics of a negative feedback loop. Phys. Rev. E 81(3), 031924 (2010). https://doi.org/10.1103/PhysRevE.81.031924
Sanchez, A., Choubey, S., Kondev, J.: Regulation of noise in gene expression. Annu. Rev. Biophys. 42, 469–491 (2013). https://doi.org/10.1146/annurev-biophys-083012-130401
Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics-a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017). https://doi.org/10.1088/1751-8121/aa54d9
Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. Presented at the (2008). https://doi.org/10.1073/pnas.0803850105
Singh, A., Hespanha, J.P.: Approximate moment dynamics for chemically reacting systems. IEEE Trans. Autom. Control 56(2), 414–418 (2011). https://doi.org/10.1109/TAC.2010.2088631
Singh, A., Bokes, P.: Consequences of mRNA transport on stochastic variability in protein levels. Biophys. J . 103(5), 1087–1096 (2012). https://doi.org/10.1016/j.bpj.2012.07.015
Singh, A., Hespanha, J.P.: Stochastic hybrid systems for studying biochemical processes. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 368(1930), 4995–5011 (2010). https://doi.org/10.1098/rsta.2010.0211
Soltani, M., Vargas-Garcia, C.A., Singh, A.: Conditional moment closure schemes for studying stochastic dynamics of genetic circuits. IEEE Trans. Biomed. Circuits Syst. 9(4), 518–526 (2015). https://doi.org/10.1109/tbcas.2015.2453158
Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. 99(20), 12795–12800 (2002). https://doi.org/10.1073/pnas.162041399
Thattai, M., Oudenaarden, A.v.: Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. 98(15), 8614–8619 (2001). https://doi.org/10.1073/pnas.151588598
Thomas, P.: Intrinsic and extrinsic noise of gene expression in lineage trees. Sci. Rep. 9(1), 474 (2019). https://doi.org/10.1038/s41598-018-35927-x
Warren, P.B., Tănase-Nicola, S., ten Wolde, P.R.: Exact results for noise power spectra in linear biochemical reaction networks. J. Chem. Phys. 125(14), 144904 (2006). https://doi.org/10.1063/1.2356472
Zhou, T., Liu, T.: Quantitative analysis of gene expression systems. Quantitative Biol. 3(4), 168–181 (2015). https://doi.org/10.1007/s40484-015-0056-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Çelik, C., Bokes, P., Singh, A. (2021). Protein Noise and Distribution in a Two-Stage Gene-Expression Model Extended by an mRNA Inactivation Loop. In: Cinquemani, E., Paulevé, L. (eds) Computational Methods in Systems Biology. CMSB 2021. Lecture Notes in Computer Science(), vol 12881. Springer, Cham. https://doi.org/10.1007/978-3-030-85633-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-85633-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85632-8
Online ISBN: 978-3-030-85633-5
eBook Packages: Computer ScienceComputer Science (R0)