Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recommendations for the Development of a Robotic Drinking and Eating Aid - An Ethnographic Study

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

Being able to live independently and self-determined in one’s own home is a crucial factor or human dignity and preservation of self-worth. For people with severe physical impairments who cannot use their limbs for every day tasks, living in their own home is only possible with assistance from others. The inability to move arms and hands makes it hard to take care of oneself, e.g. drinking and eating independently. In this paper, we investigate how 15 participants with disabilities consume food and drinks. We report on interviews, participatory observations, and analyzed the aids they currently use. Based on our findings, we derive a set of recommendations that supports researchers and practitioners in designing future robotic drinking and eating aids for people with disabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanccaray, D., Chau, J.M., Pirca, J., Sepulveda, F., Hayashibe, M.: Assistive robot arm controlled by a p300-based brain machine interface for daily activities. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1171–1174 (2019). https://doi.org/10.1109/NER.2019.8717042

  2. Assistive Innovations B.V.: iARM—Robotic arm for humans, mountable on powered wheelchair. https://www.assistive-innovations.com/robotic-arms/iarm. Accessed 2 May 2021

  3. Assistive Innovations B.V.: iEAT Robot—Assistive feeding and eating robot for people. https://www.assistive-innovations.com/eatingdevices/ieat-robot. Accessed 2 May 2021

  4. Beaudoin, M., Lettre, J., Routhier, F., Archambault, P.S., Lemay, M., Gélinas, I.: Long-term use of the JACO robotic arm: a case series. Disabil. Rehabil. Assist. Technol. 14(3), 267–275 (2019). https://doi.org/10.1080/17483107.2018.1428692

    Article  Google Scholar 

  5. Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Dir. Assoc. 13(2), 114–120 (2012). https://doi.org/10.1016/j.jamda.2010.10.002

    Article  Google Scholar 

  6. Bickenbach, J.: International Perspectives on Spinal Cord Injury. World Health Organization, Geneva (2013)

    Google Scholar 

  7. Bogner, A., Littig, B., Menz, W.: Interviews mit Experten. QS, Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-531-19416-5

    Book  Google Scholar 

  8. Canal, G., Alenyà, G., Torras, C.: Personalization framework for adaptive robotic feeding assistance. In: Agah, A., Cabibihan, J.-J., Howard, A.M., Salichs, M.A., He, H. (eds.) ICSR 2016. LNCS (LNAI), vol. 9979, pp. 22–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47437-3_3

    Chapter  Google Scholar 

  9. Chen, T.L., et al.: Robots for humanity: using assistive robotics to empower people with disabilities. IEEE Rob. Autom. Mag. 20(1), 30–39 (2013). https://doi.org/10.1109/MRA.2012.2229950

    Article  Google Scholar 

  10. DESiN LLC: Obi—The first dining robot of its kind. https://meetobi.com/. Accessed 2 May 2021

  11. Duchowski, A.T.: Gaze-based interaction: a 30 year retrospective. Comput. Graph. 73, 59–69 (2018). https://doi.org/10.1016/j.cag.2018.04.002

    Article  Google Scholar 

  12. Duckworth, D., Henkel, Z., Wuisan, S., Cogley, B., Collins, C., Bethel, C.: Therabot: the initial design of a robotic therapy support system. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts, pp. 13–14 (2015). https://doi.org/10.1145/2701973.2701993

  13. Eftring, H., Frennert, S.: Designing a social and assistive robot for seniors. Zeitschrift für Gerontologie und Geriatrie 49(4), 274–281 (2016). https://doi.org/10.1007/s00391-016-1064-7

    Article  Google Scholar 

  14. Fattal, C., Leynaert, V., Laffont, I., Baillet, A., Enjalbert, M., Leroux, C.: SAM, an assistive robotic device dedicated to helping persons with quadriplegia: usability study. Int. J. Soc. Rob. 11(1), 89–103 (2018). https://doi.org/10.1007/s12369-018-0482-7

    Article  Google Scholar 

  15. Federici, S.: Assistive Technology Assessment Handbook. CRC Press, Taylor & Francis Group, Boca Raton (2018)

    Google Scholar 

  16. Federici, S., et al.: Successful assistive technology service delivery outcomes from applying a person-centered systematic assessment process: a case study. Life Span Disabil. 18(1), 41–74 (2015). http://www.lifespanjournal.it/client/abstract/ENG2902.%20Federici.pdf

    Google Scholar 

  17. Frennert, S., Östlund, B.: Review: seven matters of concern of social robots and older people. Int. J. Soc. Rob. 6(2), 299–310 (2014). https://doi.org/10.1007/s12369-013-0225-8

    Article  Google Scholar 

  18. Gallenberger, D., Bhattacharjee, T., Kim, Y., Srinivasa, S.S.: Transfer depends on acquisition: analyzing manipulation strategies for robotic feeding. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 267–276 (2019). https://doi.org/10.1109/HRI.2019.8673309

  19. Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M., Martin, R.: Design for wearability. In: Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215), pp. 116–122 (1998). https://doi.org/10.1109/ISWC.1998.729537

  20. Google VR: Google Cardboard. https://arvr.google.com/cardboard/. Accessed 2 May 2021

  21. Haas, U.: Caring for People with Paraplegia: Problems, Needs, Resources and Interventions (nach “Pflege von Menschen mit Querschnittlähmung Probleme, Bedürfnisse, Ressourcen und Interventionen”). Huber, Bern (2012)

    Google Scholar 

  22. Jackowski, A., Gebhard, M., Thietje, R.: Head motion and head gesture-based robot control: a usability study. IEEE Trans. Neural Syst. Rehabil. Eng. 26(1), 161–170 (2018). https://doi.org/10.1109/TNSRE.2017.2765362

    Article  Google Scholar 

  23. Kinova Inc.: Kinova Jaco Assistive Robotic Arm. https://www.kinovarobotics.com/en/assistive-technologies/column-a1/kinovaassistive-robotic-arm. Accessed 2 May 2021

  24. Klein, B.: Aides, assistive Technologies, and Robotics: Maintaining Independence and Quality of Life in old age (nach “Hilfsmittel, Assistive Technologien und Robotik: Selbstständigkeit und Lebensqualität im Alter erhalten”). Kohlhammer Verlag (2020)

    Google Scholar 

  25. Kyrarini, M., et al.: A survey of robots in healthcare. Technologies 9(1), 8 (2021). https://doi.org/10.3390/technologies9010008

    Article  Google Scholar 

  26. Laitano, M.I.: Developing a participatory approach to accessible design. Int. J. Sociotechnology Knowl. Dev. 9(4), 1–11 (2017). https://doi.org/10.4018/IJSKD.2017100101

    Article  Google Scholar 

  27. Lee, H.R., et al.: Steps toward participatory design of social robots. In: HRI 2017, pp. 244–253. IEEE, Piscataway (2017). https://doi.org/10.1145/2909824.3020237

  28. Mahmud, S., Lin, X., Kim, J.: Interface for human machine interaction for assistant devices: a review. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), pp. 768–773 (2020). https://doi.org/10.1109/CCWC47524.2020.9031244

  29. Mandy, A., Sims, T., Stew, G., Onions, D.: Manual feeding device experiences of people with a neurodisability. Am. J. Occup. Ther. 72(3), 7203345010p1–7203345010p5 (2018). https://doi.org/10.5014/ajot.2018.025353

    Article  Google Scholar 

  30. Martinsen, B., Harder, I., Biering-Sorensen, F.: The meaning of assisted feeding for people living with spinal cord injury: a phenomenological study. J. Adv. Nurs. 62(5), 533–540 (2008). https://doi.org/10.1111/j.1365-2648.2008.04637.x

    Article  Google Scholar 

  31. Matera, C., et al.: Put yourself in my wheelchair: perspective-taking can reduce prejudice toward people with disabilities and other stigmatized groups. J. Appl. Soc. Psychol. 51(3), 273–285 (2021). https://doi.org/10.1111/jasp.12734

    Article  Google Scholar 

  32. Mayring, P.: Qualitative Content Analysis: Basics and Techniques (nach “Qualitative Inhaltsanalyse: Grundlagen und Techniken”). Beltz, Weinheim (2015)

    Google Scholar 

  33. McColl, M.A., Charlifue, S., Glass, C., Lawson, N., Savic, G.: Aging, gender, and spinal cord injury. Arch. Phys. Med. Rehabil. 85(3), 363–367 (2004). https://doi.org/10.1016/j.apmr.2003.06.022

    Article  Google Scholar 

  34. Merkel, S., Kucharski, A.: Participatory design in gerontechnology: a systematic literature review. Gerontologist 59(1), e16–e25 (2018). https://doi.org/10.1093/geront/gny034

    Article  Google Scholar 

  35. Park, D., et al.: Active robot-assisted feeding with a general-purpose mobile manipulator: design, evaluation, and lessons learned. Rob. Auton. Syst. 124, 103344 (2020). https://doi.org/10.1016/j.robot.2019.103344

    Article  Google Scholar 

  36. Pascher, M., Schneegass, S., Gerken, J.: SwipeBuddy. In: Lamas, D., Loizides, F., Nacke, L., Petrie, H., Winckler, M., Zaphiris, P. (eds.) INTERACT 2019, Part IV. LNCS, vol. 11749, pp. 568–571. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29390-1_39

    Chapter  Google Scholar 

  37. Pilarczyk, U., Mietzner, U.: Picture science methods in research on education and social science (nach “Bildwissenschaftliche Methoden in der erziehungs- und sozialwissenschaftlichen Forschung’’). Zeitschrift für qualitative Bildungs-, Beratungs- und Sozialforschung 1(2), 343–364 (2000). https://www.ssoar.info/ssoar/handle/document/28057

    Google Scholar 

  38. Plaumann, K., Ehlers, J., Geiselhart, F., Yuras, G., Huckauf, A., Rukzio, E.: Better than you think: head gestures for mid air input. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015, Part III. LNCS, vol. 9298, pp. 526–533. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22698-9_36

    Chapter  Google Scholar 

  39. Reichertz, J.: Introduction to Qualitative Video Analysis – A hermeneutic-sociological Analysis Tool (nach “Einführung in die qualitative Videoanalye – Eine hermeneutisch-wissenssoziologische Fallanalyse”). VS Verlag für Sozialwissenschaften, Wiesbaden (2011)

    Google Scholar 

  40. Roig-Maimó, M.F., MacKenzie, I.S., Manresa-Yee, C., Varona, J.: Head-tracking interfaces on mobile devices: evaluation using fitts’ law and a new multi-directional corner task for small displays. Int. J. Hum. Comput. Stud. 112, 1–15 (2018). https://doi.org/10.1016/j.ijhcs.2017.12.003

    Article  Google Scholar 

  41. Rudigkeit, N., Gebhard, M.: Amicus|a head motion-based interface for control of an assistive robot. Sensors 19(12), 2836 (2019). https://doi.org/10.3390/s19122836

    Article  Google Scholar 

  42. Sałkowska, M.: Carrying out research among persons with disabilities and their relatives – selected ethical issues. Zoon Politikon 8, 200–217 (2018). https://doi.org/10.4467/2543408XZOP.18.010.10066

    Article  Google Scholar 

  43. Scherer, M.J.: Living in the State of Stuck: How Assistive Technology Impacts the Lives of People with Disabilities. Brookline Books, Brookline (2005)

    Google Scholar 

  44. Simonsen, J.: Routledge International Handbook of Participatory Design. Routledge, New York (2013)

    Google Scholar 

  45. Stalljann, S., Wöhle, L., Schäfer, J., Gebhard, M.: Performance analysis of a head and eye motion-based control interface for assistive robots. Sensors 20(24), 7162 (2020). https://doi.org/10.3390/s20247162

    Article  Google Scholar 

  46. Statistisches Bundesamt (Destatis): Statistical Yearbook 2019 – Chapter 4 Health (nach “Statistisches Jahrbuch 2019 – Kapitel 4 Gesundheit”). https://www.destatis.de/DE/Themen/Querschnitt/Jahrbuch/jb-gesundheit.pdf (2019)

  47. Statistisches Bundesamt (Destatis): Disability Facts and Figures - Brief Report 2019 (nach “Statistik der schwerbehinderten Menschen - Kurzbericht 2019”) (2020). https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Behinderte-Menschen/Publikationen/Downloads-Behinderte-Menschen/sozial-schwerbehinderte-kb-5227101199004.html

  48. Thielke, S., Harniss, M., Thompson, H., Patel, S., Demiris, G., Johnson, K.: Maslow’s hierarchy of human needs and the adoption of health-related technologies for older adults. Ageing Int. 37(4), 470–488 (2012). https://doi.org/10.1007/s12126-011-9121-4

    Article  Google Scholar 

  49. Verza, R., Carvalho, M.L.L., Battaglia, M.A., Uccelli, M.M.: An interdisciplinary approach to evaluating the need for assistive technology reduces equipment abandonment. Multiple Scler. J. 12(1), 88–93 (2006). https://doi.org/10.1191/1352458506ms1233oa

    Article  Google Scholar 

  50. Vines, J., Clarke, R., Wright, P., McCarthy, J., Olivier, P.: Configuring participation: on how we involve people in design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 429–438 (2013). https://doi.org/10.1145/2470654.2470716

  51. World Health Organization: Spinal cord injury. https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury. Accessed 2 May 2021

Download references

Acknowledgement

We would like to thank all study participants and their assistants for their valuable opinions and time. The authors are also grateful for the support of the Center for Paraplegic Patients Hamburg, the Locked-in-Syndrom e.V. Berlin, and the State Association of the German Society for Multiple Sclerosis Hessen e.V.. This research is supported by the German Federal Ministry of Education and Research (BMBF, FKZ: 16SV7866K and 16SV7868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Pascher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pascher, M., Baumeister, A., Schneegass, S., Klein, B., Gerken, J. (2021). Recommendations for the Development of a Robotic Drinking and Eating Aid - An Ethnographic Study. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12932. Springer, Cham. https://doi.org/10.1007/978-3-030-85623-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85623-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85622-9

  • Online ISBN: 978-3-030-85623-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics