Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sticking Out Like a Non-dominant Thumb

Handedness and Fitts’ Throughput for Touch-Based Mobile Interfaces

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

In this paper we present our study (n = 30) to gauge the effect of hand-dominance on Fitts’ throughput through four test cases—forefingers and thumbs of dominant and non-dominant hands in tapping tasks for touch-based mobile interfaces. We set out with the expectation that throughput for a dominant digit would exceed that for the corresponding digit of the other hand. We reveal that this was followed in the case of right-handed users for both forefingers and thumbs, and in case of forefingers for all users. Right-handed users had higher throughput for dominant digits (mean = 5.608) than non-dominant digits (mean = 4.736). All users had higher throughput for dominant forefingers (mean = 6.081) than non-dominant forefingers (mean = 5.436). However, surprisingly, left-handed users showed a higher throughput for non-dominant thumbs (mean = 6.078) than dominant thumbs (mean = 5.721). Throughputs of forefingers and thumbs were not significantly different for any groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Google Pixel 3a - weight: 147 g, dimensions: 151.3 × 70.1 × 8.2 mm (5.96 × 2.76 × 0.32 in.), display size (measured diagonally): 142.2 mm (5.6 in.), display resolution: 1080 × 2220 pixels, pixel density: 441 PPI.

References

  1. Annett, M.: A classification of hand preference by association analysis. Br. J. Psychol. 61, 303–321 (1970). https://doi.org/10.1111/j.2044-8295.1970.tb01248.x

    Article  Google Scholar 

  2. Bi, X., Li, Y., Zhai, S.: FFitts law: modeling finger touch with Fitts’ law. In: 2013 CHI Conference on Human Factors in Computing Systems, pp. 1363–1372 (2013). https://doi.org/10.1145/2470654.2466180

  3. Brush, K., et al.: Index of difficulty measurement for handedness with biometric authentication. In: Stephanidis, C., Antona, M. (eds.) HCII 2019. CCIS, vol. 1088, pp. 413–423. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30712-7_51

    Chapter  Google Scholar 

  4. Chapman, L.J., Chapman, J.P.: The measurement of handedness. Brain Cogn. 6(2), 175–183 (1987). https://doi.org/10.1016/0278-2626(87)90118-7

    Article  MATH  Google Scholar 

  5. Coren, S.: The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: norms for young adults. Bull. Psychon. Soc. 31(1), 1–3 (1993). https://doi.org/10.3758/BF03334122

    Article  Google Scholar 

  6. Crotte, A.M., Hepting, D.H., Roshchina, A.: Left-handed control configuration for side-scrolling games. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. LBW1622. ACM (2019). https://doi.org/10.1145/3290607.3312777

  7. Drewes, H.: Only one Fitts’ law formula please! In: CHI 2010 Extended Abstracts on Human Factors in Computing Systems, pp. 2813–2822. ACM (2010). https://doi.org/10.1145/1753846.1753867

  8. Edinburgh Handedness Inventory. http://www.brainmapping.org/shared/Edinburgh.php. Accessed 2020

  9. Fan, Z., Coutrix, C.: Impact of hand used on one-handed back-of-device performance. In: Proceedings of the ACM on Human-Computer Interaction 4, pp. 1–19. ISS (2020). https://doi.org/10.1145/3427316

  10. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47(6), 381 (1954). https://doi.org/10.1037//0096-3445.121.3.262

    Article  Google Scholar 

  11. Google Material Design Guidelines. https://material.io/design/usability/accessibility.html#layout-typography. Accessed 2020

  12. Gori, J., Rioul, O., Guiard, Y., Beaudouin-Lafon, M.: The perils of confounding factors: how Fitts’ law experiments can lead to false conclusions. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–10. ACM (2018). https://doi.org/10.1145/3173574.3173770f

  13. Henze, N., Boll, S.: It does not Fitts my data! Analysing large amounts of mobile touch data. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6949, pp. 564–567. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23768-3_83

    Chapter  Google Scholar 

  14. Hoober, S.: How do users really hold mobile devices? https://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php. Accessed 2020

  15. Kim, I., Hyeon, J.J.: Performance comparisons between thumb-based and finger-based input on a small touch-screen under realistic variability. Int. J. Hum. Comput. Interact. 31(11), 746–760 (2015). https://doi.org/10.1080/10447318.2015.1045241

    Article  Google Scholar 

  16. Le, H.V., Mayer, S., Wolf, K., Henze, N.: Finger placement and hand grasp during smartphone interaction. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing systems, pp. 2576–2584. https://doi.org/10.1145/2851581.2892462

  17. Lehmann, F., Kipp, M.: How to hold your phone when tapping: a comparative study of performance, precision, and errors. In: Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces, pp. 115–127. ACM (2018). https://doi.org/10.1145/3279778.3279791

  18. Lewis, R.: The effect of handedness on use of touch screen versus touch pad. In: Proceedings of the 5th International Conference on Application and Theory of Automation in Command and Control Systems, pp. 115–120. ACM (2015). https://doi.org/10.1145/2899361.2899373

  19. Ljubic, S., Glavinic, V., Kukec, M.: Finger-based pointing performance on mobile touchscreen devices: Fitts’ law fits. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2015. LNCS, vol. 9175, pp. 318–329. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20678-3_31

    Chapter  Google Scholar 

  20. Löchtefeld, M., Schardt, P., Krüger, A., Boring, S.: Detecting users handedness for ergonomic adaptation of mobile user inrfaces. In: Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, pp. 245–249 (2015). https://doi.org/10.1145/2836041.2836066

  21. Scott MacKenzie, I.: Fitts’ throughput and the remarkable case of touch-based target selection. In: Kurosu, M. (ed.) HCI 2015. LNCS, vol. 9170, pp. 238–249. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20916-6_23

    Chapter  Google Scholar 

  22. McManus, I.C.: The interpretation of laterality. Cortex 19(2), 187–214 (1983)

    Article  Google Scholar 

  23. Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971). https://doi.org/10.1016/0028-3932(71)90067-4

    Article  Google Scholar 

  24. Parhi, P., Karlson, A.K., Bederson, B.B.: Target size study for one-handed thumb use on small touchscreen devices. In: Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 203–210. ACM (2006). https://doi.org/10.1145/1152215.1152260

  25. Perry, K.B., Hourcade, J.P.: Evaluating one handed thumb tapping on mobile touchscreen devices. In: Proceedings of Graphics Interface 2008, pp. 57–64. Canadian Information Processing Society (2008). https://doi.org/10.5555/1375714.1375725

  26. Plaumann, K., Weing, M., Winkler, C., Müller, M., Rukzio, E.: Towards accurate cursorless pointing: the effects of ocular dominance and handedness. Pers. Ubiquit. Comput. 22(4), 633–646 (2017). https://doi.org/10.1007/s00779-017-1100-7

    Article  Google Scholar 

  27. Solodkin, A., Hlustik, P., Noll, D.C., Small, S.L.: Lateralization of motor circuits and handedness during finger movements. Eur. J. Neurol. 8(5), 425–434 (2001). https://doi.org/10.1046/j.1468-1331.2001.00242.x

    Article  Google Scholar 

  28. Soukoreff, R.W., MacKenzie, I.S.: Towards a standard for pointing device evaluation, on perspectives on 27 years of Fitts’ law research in HCI. Int. J. Hum. Comput. Stud. 61(6), 751–789 (2004)

    Article  Google Scholar 

  29. Trudeau, M.B., Young, J.G., Jindrich, D.L., Dennerlein, J.T.: Thumb motor performance varies with thumb and wrist posture during single-handed mobile phone use. J. Biomech. 45(14), 2349–2354 (2012). https://doi.org/10.1016/j.jbiomech.2012.07.012

    Article  Google Scholar 

  30. Williams, S.M.: Handedness inventories: Edinburgh versus Annett. Neuropsychology 5(1), 43 (1991). https://doi.org/10.1037/0894-4105.5.1.43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shanbhag, M., Joshi, A., Kochar, B.S. (2021). Sticking Out Like a Non-dominant Thumb. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12934. Springer, Cham. https://doi.org/10.1007/978-3-030-85613-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85613-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85612-0

  • Online ISBN: 978-3-030-85613-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics