Nothing Special   »   [go: up one dir, main page]

Skip to main content

Touch, See and Talk: Tangibles for Engaging Learners into Graph Algorithmic Thinking

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

Algorithmic Thinking (AT) is at the core of Computational Thinking (CT). A number of initiatives target CT, few of them focus on AT and even less deal with Graph Algorithmic Thinking (GAT) with younger learners. This paper reports on tangibles’ design for GAT, appealing to different senses so as to engage learners actively. It presents a field study with GAT tangibles and 14–15 years old high-school learners, divided into two groups: one group used tangibles, the other used traditional means, namely, paper and pencils. The study results show that tangibles were more engaging than in the traditional GAT setting, and differences among groups are statistically significant. The paper concludes by discussing the study results and advancing suggestions for future interventions related to engagingly teaching GAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, A., Gardner-McCune, C., Touretzky, D.S.: Evaluating the effect of using physical manipulatives to foster computational thinking in elementary school. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, SIGCSE 2017, New York, NY, USA, pp. 9–14. ACM (2017). https://doi.org/10.1145/3017680.3017791

  2. Appleton, J.J., Christenson, S.L., Kim, D., Reschly, A.L.: Measuring cognitive and psychological engagement: validation of the student engagement instrument. J. School Psychol. 44(5), 427–445 (2006). https://doi.org/10.1016/j.jsp.2006.04.002

    Article  Google Scholar 

  3. Athanasiou, L., Topali, P., Mikropoulos, T.A.: The use of robotics in introductory programming for elementary students. In: Alimisis, D., Moro, M., Menegatti, E. (eds.) Edurobotics 2016 2016. AISC, vol. 560, pp. 183–192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55553-9_14

    Chapter  Google Scholar 

  4. Barendsen, E., et al.: Concepts in k-9 computer science education. In: Proceedings of the 2015 ITiCSE on Working Group Reports, ITICSE-WGR 2015, New York, NY, USA, pp. 85–116. ACM (2015). https://doi.org/10.1145/2858796.2858800

  5. Bargury, I.Z., et al.: Implementing a new computer science curriculum for middle school in Israel. In: 2012 Frontiers in Education Conference (FIE), pp. 1–6. IEEE (2012)

    Google Scholar 

  6. Bell, T.A.J., Freeman, I., Grimley, M.: Computer science without computers: new outreach methods from old tricks. In: Proceedings of the 21st Annual Conference of the National Advisory Committee on Computing Qualifications (2008)

    Google Scholar 

  7. Bers, M.U.: The Tangiblek robotics program: applied computational thinking for young children. Early Childhood Res. Pract. 12(2), n2 (2010)

    Google Scholar 

  8. Bocconi, S., et al.: Developing computational thinking in compulsory education. European Commission, JRC Science for Policy Report (2016). https://doi.org/10.2791/792158

  9. Bocconi, S., et al.: Developing computational thinking: approaches and orientations in k-12 education. In: EdMedia: World Conference on Educational Media and Technology, pp. 13–18. Association for the Advancement of Computing in Education (AACE) (2016)

    Google Scholar 

  10. Bonani, A., Del Fatto, V., Dodero, G., Gennari, R., Raimato, G.: First steps towards the design of tangibles for graph algorithmic thinking. In: Vittorini, P., et al. (eds.) MIS4TEL 2017. AISC, vol. 617, pp. 110–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60819-8_13

    Chapter  Google Scholar 

  11. Bonani, A., Del Fatto, V., Dodero, G., Gennari, R., Raimato, G.: Participatory design of tangibles for graphs: a small-scale field study with children. In: Mealha, Ó., Divitini, M., Rehm, M. (eds.) SLERD 2017. SIST, vol. 80, pp. 161–168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61322-2_16

    Chapter  Google Scholar 

  12. Bonani, A., Del Fatto, V., Gennari, R.: Interactive Objects for the Scaffolding of Graph Algorithmic Thinking at School. https://doi.org/10.13140/RG.2.2.34628.37760. Accessed 14 Jan 2021

  13. Brondino, M., et al.: Emotions and inclusion in co-design at school: let’s measure them! Adv. Intell. Syst. Comput. 374, 1–8 (2015). https://doi.org/10.1007/978-3-319-19632-9_1

    Article  Google Scholar 

  14. Capovilla, D., Krugel, J., Hubwieser, P.: Teaching algorithmic thinking using haptic models for visually impaired students. In: 2013 Learning and Teaching in Computing and Engineering (LaTiCE), pp. 167–171. IEEE (2013)

    Google Scholar 

  15. Christenson, S.L., Reschly, A.L., Wylie, C.: Handbook of Research on Student Engagement. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-2018-7

    Book  Google Scholar 

  16. Collaborative Education Lab: Learning scenarios. http://colab.eun.org/learning-scenarios. Accessed 14 Jan 2021

  17. Corradini, I., Lodi, M., Nardelli, E.: Conceptions and misconceptions about computational thinking among Italian primary school teachers. In: Proceedings of the 2017 ACM Conference on International Computing Education Research, ICER 2017, New York, NY, USA, pp. 136–144. ACM (2017). https://doi.org/10.1145/3105726.3106194

  18. Duncan, C., Bell, T.: A pilot computer science and programming course for primary school students. In: Proceedings of the Workshop in Primary and Secondary Computing Education, pp. 39–48. ACM (2015)

    Google Scholar 

  19. Eisenberg, M., Elumeze, N., MacFerrin, M., Buechley, L.: Children’s programming, reconsidered: settings, stuff, and surfaces. In: Proceedings of the 8th International Conference on Interaction Design and Children. pp. 1–8. ACM (2009)

    Google Scholar 

  20. European Commission: New Skills Agenda for Europe. https://ec.europa.eu/social/main.jsp?catId=1223. Accessed 14 Jan 2021

  21. European Schoolnet: Computing our future. European Schoolnet (2015). http://fcl.eun.org/documents/10180/14689/Computing+our+future_final.pdf

  22. Figg, C., Jamani, K.J.: Exploring teacher knowledge and actions supporting technology-enhanced teaching in elementary schools: two approaches by pre-service teachers. Austral. J. Educ. Technol. 27(7) (2011)

    Google Scholar 

  23. Fredricks, J.A., Blumenfeld, P.C., Paris, A.H.: School engagement: potential of the concept, state of the evidence. Rev. Educ. Res. 74(1), 59–109 (2004). https://doi.org/10.3102/00346543074001059

    Article  Google Scholar 

  24. Fredricks, J.A., McColskey, W.: The measurement of student engagement: a comparative analysis of various methods and student self-report instruments. In: Christenson, S., Reschly, A., Wylie, C. (eds.) Handbook of Research on Student Engagement, pp. 763–782. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-2018-7_37

    Chapter  Google Scholar 

  25. Futschek, G., Moschitz, J.: Learning algorithmic thinking with tangible objects eases transition to computer programming. In: Kalaš, I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 155–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24722-4_14

    Chapter  Google Scholar 

  26. Futschek, G.: Algorithmic thinking: the key for understanding computer science. In: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 159–168. Springer, Heidelberg (2006). https://doi.org/10.1007/11915355_15

    Chapter  Google Scholar 

  27. Gennari, R., Melonio, A., Rizvi, M.: The participatory design process of tangibles for children’s socio-emotional learning. In: Barbosa, S., Markopoulos, P., Paternò, F., Stumpf, S., Valtolina, S. (eds.) IS-EUD 2017. LNCS, vol. 10303, pp. 167–182. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58735-6_12

    Chapter  Google Scholar 

  28. Gennari, R., Melonio, A., Rizvi, M.: From turntalk to classtalk: the emergence of tangibles for class conversations in primary school classrooms. Behav. Inf. Technol. 1–20 (2019)

    Google Scholar 

  29. Gennari, R., et al.: Children’s emotions and quality of products in participatory game design. Int. J. Hum Comput Stud. 101, 45–61 (2017)

    Article  Google Scholar 

  30. Grover, S., Pea, R.: Computational thinking: A competency whose time has come. Computer Science Education: Perspectives on Teaching and Learning in School, p. 19 (2018)

    Google Scholar 

  31. Hourcade, J.P.: Interaction design and children. Found. Trends Hum. Comput. Interact. 1(4), 277–392 (2008). https://doi.org/10.1561/1100000006

    Article  Google Scholar 

  32. Lee, I., et al.: Computational thinking for youth in practice. ACM Inroads 2(1), 32–37 (2011)

    Article  Google Scholar 

  33. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The scratch programming language and environment. ACM Trans. Comput. Educ. (TOCE) 10(4), 16 (2010)

    Google Scholar 

  34. Mascio, T., Gennari, R., Tarantino, L., Vittorini, P.: Designing visualizations of temporal relations for children: action research meets HCI. Multimed. Tools Appl. 76(4), 4855–4893 (2017). https://doi.org/10.1007/s11042-016-3609-6

    Article  Google Scholar 

  35. Miur & CINI: Programma il futuro. https://programmailfuturo.it/chi-siamo. Accessed 14 Jan 2021

  36. Moreno, R., Mayer, R.: Interactive multimodal learning environments. Educ. Psychol. Rev. 19(3), 309–326 (2007). https://doi.org/10.1007/s10648-007-9047-2

    Article  Google Scholar 

  37. Nasir, J., Bruno, B., Dillenbourg, P.: Is there one way’ of learning? A data-driven approach. In: Companion Publication of the 2020 International Conference on Multimodal Interaction, ICMI 2020 Companion, New York, NY, USA, pp. 388–391. ACM (2020). https://doi.org/10.1145/3395035.3425200

  38. Ocumpaugh, J., Baker, R., Rodrigo, M.: Monitoring protocol (BROMP) 2.0 technical & training manual. Teachers college, New York, NY (2015)

    Google Scholar 

  39. Parmentier, Y., et al.: PIAF: developing computational and algorithmic thinking in fundamental education. In: EdMedia+ Innovate Learning, pp. 315–322. Association for the Advancement of Computing in Education (AACE) (2020)

    Google Scholar 

  40. Pasterk, S., Bollin, A.: Digital literacy or computer science: where do information technology related primary education models focus on? In: 2017 15th International Conference on Emerging eLearning Technologies and Applications (ICETA), pp. 1–7 (2017). https://doi.org/10.1109/ICETA.2017.8102517

  41. Pasterk, S., Sabitzer, B., Demarle-Meusel, H., Bollin, A.: Informatics-lab: attracting primary school pupils for computer science. In: Proceedings of LACCEI International Multi-Conference for Engineering, Education, and Technology, San Josė, Costa Rica (2016)

    Google Scholar 

  42. Pawlowski, J., et al.: Computational thinking and acting: an approach for primary school competency development. In: CEUR Workshop Proceedings. RWTH Aachen (2020)

    Google Scholar 

  43. Peng, H.: Algo.rhythm: Computational thinking through tangible music device. In: Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction, TEI 2012, New York, NY, USA, pp. 401–402. ACM (2012). https://doi.org/10.1145/2148131.2148234

  44. Preece, J., Sharp, H., Rogers, Y.: Interaction Design: Beyond Human-Computer Interaction. Wiley, Hoboken (2019)

    Google Scholar 

  45. Read, J.C., MacFarlane, S.: Using the fun toolkit and other survey methods to gather opinions in child computer interaction. In: Proceedings of the 2006 Conference on Interaction Design and Children, IDC 2006, New York, NY, USA, pp. 81–88. ACM (2006). https://doi.org/10.1145/1139073.1139096

  46. Reinhard Pekrun, M.B.: Self-Report Measures of Academic Emotions, chap. 28. Routledge (2014). https://doi.org/10.4324/9780203148211.ch28

  47. Reschly, A.L., Christenson, S.L., Jingle, J., Conceptual Haziness: Evolution and Future Directions of the Engagement Construct, pp. 3–19. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-2018-7_1

  48. Root, E., et al.: Grasping algorithms: exploring toys that teach computational thinking. In: Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia, MUM 2017, New York, NY, USA, pp. 387–392. ACM (2017). https://doi.org/10.1145/3152832.3156620

  49. Sauro, J., Lewis, J.R.: Quantifying the User Experience: Practical Statistics for User Research. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  50. Schneider, B., Jermann, P., Zufferey, G., Dillenbourg, P.: Benefits of a tangible interface for collaborative learning and interaction. IEEE Trans. Learn. Technol. 4(3), 222–232 (2011). https://doi.org/10.1109/TLT.2010.36

    Article  Google Scholar 

  51. Skinner, E.A., Pitzer, J.R.: Developmental Dynamics of Student Engagement, Coping, and Everyday Resilience, pp. 21–44. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-2018-7_2

  52. Soute, I., Markopoulos, P., Magielse, R.: Head up games: combining the best of both worlds by merging traditional and digital play. Pers. Ubiquit. Comput. 14(5), 435–444 (2010). https://doi.org/10.1007/s00779-009-0265-0

    Article  Google Scholar 

  53. Sysło, M.M., Kwiatkowska, A.B.: Introducing a new computer science curriculum for all school levels in Poland. In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378, pp. 141–154. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25396-1_13

    Chapter  Google Scholar 

  54. Wang, D., Wang, T., Liu, Z.: A tangible programming tool for children to cultivate computational thinking. Sci. World J. 2014 (2014). https://doi.org/10.1155/2014/428080

  55. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

    Article  Google Scholar 

  56. Yu, J., Zheng, C., Tamashiro, M.A., Gonzalez-millan, C., Roque, R.: CodeAttach: engaging children in computational thinking through physical play activities. In: Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 453–459 (2020)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank anonymous reviewers, who helped reflect on the paper and improve on it. They are grateful to V. del Fatto, for helping with coding, G. Mahlknecht, the teacher of the school in Merano, who also collaborated on the co-creation of scenarios, besides all participant learners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosella Gennari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonani, A., Bollin, A., Gennari, R. (2021). Touch, See and Talk: Tangibles for Engaging Learners into Graph Algorithmic Thinking. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12935. Springer, Cham. https://doi.org/10.1007/978-3-030-85610-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85610-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85609-0

  • Online ISBN: 978-3-030-85610-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics