Abstract
During the COVID-19 pandemic, social distancing measures were employed to contain its spread. This paper describes the deployment and testing of a passive Wi-Fi scanning system to help people keep track of crowded spaces, hence comply with social distancing measures. The system is based on passive Wi-Fi sensing to detect human presence in 93 locations around a medium-sized European Touristic Island. This data is then used in website plugins and a mobile application to inform citizens and tourists about the locations’ crowdedness with real-time and historical data. To understand how people react to this type of information, we deployed online questionnaires in situ to collect user insights regarding the usefulness, safety, and privacy concerns. Results show that users considered the occupancy data reported by the system as positively related to their perception. Furthermore, the public display of this data made them feel safer while travelling and planning their commute.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, A.M.: Designing a framework to control the spread of COVID-19 by utilizing cellular system. Kurdistan J. Appl. Res. 5, 146–153 (2020). https://doi.org/10.24017/covid.16
Alsaeedy, A.A.R., Chong, E.K.P.: Detecting regions at risk for spreading COVID-19 using existing cellular wireless network functionalities. IEEE Open J. Eng. Med. Biol. 1, 187–189 (2020). https://doi.org/10.1109/OJEMB.2020.3002447. Conference Name: IEEE Open Journal of Engineering in Medicine and Biology
Baniukevic, A., Jensen, C., Lu, H.: Hybrid indoor positioning with Wi-Fi and bluetooth: architecture and performance. In: 2013 IEEE 14th International Conference on Mobile Data Management (MDM), vol. 1, pp. 207–216 (2013). https://doi.org/10.1109/MDM.2013.30
Böhmer, M., Hecht, B., Schöning, J., Krüger, A., Bauer, G.: Falling asleep with angry birds, Facebook and kindle: a large scale study on mobile application usage. Presented at the (2011)
Bonné, B., Barzan, A., Quax, P., Lamotte, W.: WiFiPi: involuntary tracking of visitors at mass events. Presented at the (2013). https://doi.org/10.1109/WoWMoM.2013.6583443
Brignull, H., Rogers, Y.: Enticing people to interact with large public displays in public spaces. Interact 3, 17–24 (2003)
Buettner, M., Prasad, R., Philipose, M., Wetherall, D.: Recognizing daily activities with RFID-based sensors. Presented at the (2009). https://doi.org/10.1145/1620545.1620553
Diethei, D., Niess, J., Stellmacher, C., Stefanidi, E., Schöning, J.: Sharing heartbeats: motivations of citizen scientists in times of crises. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3411764.3445665
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Fatih, Şİ, Gökhan, A.N., Panić, S., Stefanović, Č, Yağanoğlu, M., Prilinčević, B.: Covid-19 risk assessment in public transport using ambient sensor data and wireless communications. Bull. Nat. Sci. Res. 10(2), 43–50 (2020). https://doi.org/10.5937/bnsr10-29239
Florez, H., Singh, S.: Online dashboard and data analysis approach for assessing COVID-19 case and death data. F1000Research, vol. 9, no. 570, p. 10. 2020.12688/f1000research.24164.1
Fuentes, C., Rodríguez, I., Herskovic, V.: EmoBall: a study on a tangible interface to self-report emotional information considering digital competences. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 189–200. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26508-7_19
Gallacher, S., Golsteijn, C., Rogers, Y., Capra, L., Eustace, S.: SmallTalk: using tangible interactions to gather feedback from children. Presented at the (2016). https://doi.org/10.1145/2839462.2839481
Gallacher, S., et al.: Mood squeezer: lightening up the workplace through playful and lightweight interactions. Presented at the (2015). https://doi.org/10.1145/2675133.2675170
Gao, C., Li, P., Zhang, Y., Liu, J., Wang, L.: People counting based on head detection combining Adaboost and CNN in crowded surveillance environment. Neurocomputing 208, 108–116 (2016). https://doi.org/10.1016/j.neucom.2016.01.097
Golsteijn, C., et al.: VoxBox: a tangible machine that gathers opinions from the public at events. Presented at the (2015). https://doi.org/10.1145/2677199.2680588
Heimerl, K., Gawalt, B., Chen, K., Parikh, T., Hartmann, B.: CommunitySourcing: engaging local crowds to perform expert work via physical kiosks. Presented at the (2012). https://doi.org/10.1145/2207676.2208619
Houben, S., et al.: Roam-IO: engaging with people tracking data through an interactive physical data installation. In: Proceedings of the 2019 on Designing Interactive Systems Conference (DIS 2019), pp. 1157–1169. Association for Computing Machinery (2019). https://doi.org/10.1145/3322276.3322303
Houben, S., Weichel, C.: Overcoming interaction blindness through curiosity objects. In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems (CHI EA 2013), pp. 1539–1544. Association for Computing Machinery (2013). https://doi.org/10.1145/2468356.2468631
Ju, W., Sirkin, D.: Animate objects: how physical motion encourages public interaction. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 40–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13226-1_6
Kjærgaard, M.B., Wirz, M., Roggen, D., Tröster, G.: Mobile sensing of pedestrian flocks in indoor environments using WiFi signals. Presented at the (2012). https://doi.org/10.1109/PerCom.2012.6199854
Koch, M., von Luck, K., Schwarzer, J., Draheim, S.: The novelty effect in large display deployments-experiences and lessons-learned for evaluating prototypes. In: Proceedings of 16th European Conference on Computer-Supported Cooperative Work-Exploratory Papers. European Society for Socially Embedded Technologies (EUSSET) (2018). https://doi.org/10.18420/ecscw2018_3
Koehlmoos, T.P., Janvrin, M.L., Korona-Bailey, J., Madsen, C., Sturdivant, R.: COVID-19 self-reported symptom tracking programs in the united states: framework synthesis. J. Med. Internet Res. 22(10), e23297 (2020). https://doi.org/10.2196/23297
Koeman, L., Kalnikaité, V., Rogers, Y.: “Everyone is talking about it!”: a distributed approach to urban voting technology and visualisations. Presented at the (2015). https://doi.org/10.1145/2702123.2702263
Li, F., Valero, M., Shahriar, H., Khan, R.A., Ahamed, S.I.: Wi-COVID: a COVID-19 symptom detection and patient monitoring framework using WiFi. Smart Health 19, 100147 (2021). https://doi.org/10.1016/j.smhl.2020.100147
Meneses, F., Moreira, A.: Large scale movement analysis from WiFi based location data. Presented at the (2012). https://doi.org/10.1109/IPIN.2012.6418885
Menni, C., et al.: Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 26(7), 1037–1040 (2020). https://doi.org/10.1038/s41591-020-0916-2
Müller, J., Alt, F., Michelis, D., Schmidt, A.: Requirements and design space for interactive public displays. Presented at the (2010). https://doi.org/10.1145/1873951.1874203
Nunes, N., Ribeiro, M., Prandi, C., Nisi, V.: Beanstalk: a community based passive Wi-Fi tracking system for analysing tourism dynamics. Presented at the (2017). https://doi.org/10.1145/3102113.3102142
Oswald, M., Grace, J.: The COVID-19 contact tracing app in England and ‘experimental proportionality’. SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3632870
Park, Y.J., et al.: COVID-19 national emergency response center, epidemiology and case management team: contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg. Infect. Dis. 26(10), 2465–2468 (2020). https://doi.org/10.3201/eid2610.201315
Prandi, C., Nisi, V., Ribeiro, M., Nunes, N.: Sensing and making sense of tourism flows and urban data to foster sustainability awareness: a real-world experience. J. Big Data 8(1), 1–25 (2021). https://doi.org/10.1186/s40537-021-00442-w
Ram, N., Gray, D.: Mass surveillance in the age of COVID-19. J. Law Biosci. 7, lsaa023 (2020). https://doi.org/10.1093/jlb/lsaa023
Redin, D., Vilela, D., Nunes, N., Ribeiro, M., Prandi, C.: ViTFlow: a platform to visualize tourists flows in a rich interactive map-based interface, pp. 1–2. IEEE (2017). https://doi.org/10.23919/SustainIT.2017.8379814
Ribeiro, M., Nisi, V., Prandi, C., Nunes, N.: A data visualization interactive exploration of human mobility data during the COVID-19 outbreak: a case study, pp. 1–6. IEEE (2020). https://doi.org/10.1109/ISCC50000.2020.9219552
Ribeiro, M., Nunes, N., Nisi, V., Schöning, J.: Passive Wi-Fi monitoring in the wild: a long-term study across multiple location typologies. Pers. Ubiquit. Comput., 1–15 (2020). https://doi.org/10.1007/s00779-020-01441-z
Ruiz-Ruiz, A.J., Blunck, H., Prentow, T.S., Stisen, A., Kjærgaard, M.B.: Analysis methods for extracting knowledge from large-scale WiFi monitoring to inform building facility planning. Presented at the (2014). https://doi.org/10.1109/PerCom.2014.6813953
Said, M., Samuel, M., Shannan, N., Bashir, F.M., Dodo, Y.: Novel vision-based thermal people counting tool for tracking infected people with viruses like COVID-19. J. Adv. Res. Dyn. Control Syst. 12, 1115–1119 (2020). https://doi.org/10.5373/JARDCS/V12SP7/20202210
Shaw, P., Mikusz, M., Nurmi, P., Davies, N.: Tacita: a privacy preserving public display personalisation service. Presented at the (2018). https://doi.org/10.1145/3267305.3267627
Sohn, T., et al.: Mobility detection using everyday GSM traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224. Springer, Heidelberg (2006). https://doi.org/10.1007/11853565_13
Stevens, H., Haines, M.B.: TraceTogether: pandemic response, democracy, and technology. East Asian Sci. Technol. Soc. 14(3), 523–532 (2020). https://doi.org/10.1215/18752160-8698301
Tang, X., Xiao, B., Li, K.: Indoor crowd density estimation through mobile smartphone Wi-Fi probes. IEEE Trans. Syst. Man Cybern. Syst. 50(7), 2638–2649 (2020). https://doi.org/10.1109/TSMC.2018.2824903. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Vedaei, S.S., et al.: COVID-SAFE: an IoT-based system for automated health monitoring and surveillance in post-pandemic life. IEEE Access 8, 188538–188551 (2020).https://doi.org/10.1109/ACCESS.2020.3030194. Conference Name: IEEE Access
Whitelaw, S., Mamas, M.A., Topol, E., Spall, H.G.C.V.: Applications of digital technology in COVID-19 pandemic planning and response. Lancet Digital Health 2(8), e435–e440 (2020). https://doi.org/10.1016/S2589-7500(20)30142-4
Whittle, J., et al.: VoiceYourView: collecting real-time feedback on the design of public spaces. Presented at the (2010). https://doi.org/10.1145/1864349.1864358
Wissel, B.D., et al.: An interactive online dashboard for tracking COVID-19 in U.S. counties, cities, and states in real time. J. Am. Med. Inform. Assoc. 27(7), 1121–1125 (2020). https://doi.org/10.1093/jamia/ocaa071
Zhao, X., Delleandrea, E., Chen, L.: A people counting system based on face detection and tracking in a video, pp. 67–72. IEEE (2009). https://doi.org/10.1109/AVSS.2009.45
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Ribeiro, M., Nunes, N., Ferreira, M., Nogueira, J., Schöning, J., Nisi, V. (2021). Addressing the Challenges of COVID-19 Social Distancing Through Passive Wi-Fi and Ubiquitous Analytics: A Real World Deployment. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12933. Springer, Cham. https://doi.org/10.1007/978-3-030-85616-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-85616-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85615-1
Online ISBN: 978-3-030-85616-8
eBook Packages: Computer ScienceComputer Science (R0)