Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approach to Estimate the Skills of an Operator During Human-Robot Cooperation

  • Conference paper
  • First Online:
Human Interaction, Emerging Technologies and Future Systems V (IHIET 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 319))

  • 3454 Accesses

Abstract

This work presents a new approach to evaluate operators skills regarding their activities. This approach is based on an activity model composed of three primary activities. For each primary activities, an indicator has been proposed. The method has been applied in the case of a picking task. Results are compared with expert analysis and seem consistent. The approach shows there is no clear link between performance and skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le Boterf, G.: Ingénierie et évaluation des compétences, p. 9 (2011)

    Google Scholar 

  2. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. SMC 13(3), 257–266 (1983)

    Google Scholar 

  3. Pacaux-Lemoine, M., Itoh, M.: Towards vertical and horizontal extension of shared control concept. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3086–3091 (October 2015)

    Google Scholar 

  4. Suzuki, S.: Human adaptive mechatronics. IEEE Ind. Electron. Mag. 4(2), 28–35 (2010)

    Article  Google Scholar 

  5. Suzuki, S., Igarashi, H., Kobayashi, H., Yasuda, T., Harashima, F.: Human adaptive mechatronics and human-system modelling. Int. J. Adv. Rob. Syst. 10(3), 152 (2013)

    Article  Google Scholar 

  6. Tervo, K.: Human adaptive mechatronics methods for mobile working machines. Aalto-yliopiston teknillinen korkeakoulu (2010)

    Google Scholar 

  7. Li, Z., Liu, J., Huang, Z., Peng, Y., Pu, H., Ding, L.: Adaptive impedance control of human–robot cooperation using reinforcement learning. IEEE Trans. Industr. Electron. 64(10), 8013–8022 (2017)

    Article  Google Scholar 

  8. Habib, L., Pacaux-Lemoine, M.P., Millot, P.: Adaptation of the level of automation according to the type of cooperative partner. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 864–869 (October 2017)

    Google Scholar 

  9. Pacaux, M.-P., Godin, S.A.D., Rajaonah, B., Anceaux, F., Vanderhaegen, F.: Levels of automation and human-machine cooperation: application to human-robot interaction. IFAC Proc. Vol. 44(1), 6484–6492 (2011)

    Article  Google Scholar 

  10. Habib, L., Pacaux-Lemoine, M.-P., Millot, P.: Human-robots team cooperation in crisis management mission. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3219–3224 (October 2018)

    Google Scholar 

  11. Couvent, A., et al.: Impact of machine’s robotisation on the activity of an operator in picking tasks, vol. 876, no. 876, pp. 387–393 (2019)

    Google Scholar 

Download references

Acknowledgments

This research was financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25 with the support of the regional council Auvergne-Rhône-Alpes and the support with the European Union via the program FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Couvent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Couvent, A., Debain, C., Tricot, N. (2022). Approach to Estimate the Skills of an Operator During Human-Robot Cooperation. In: Ahram, T., Taiar, R. (eds) Human Interaction, Emerging Technologies and Future Systems V. IHIET 2021. Lecture Notes in Networks and Systems, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-030-85540-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85540-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85539-0

  • Online ISBN: 978-3-030-85540-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics