Abstract
Process mining enables organizations to discover and analyze their actual processes using event data. Event data can be extracted from any information system supporting operational processes, e.g., SAP. Whereas the data inside such systems is protected using access control mechanisms, the extracted event data contain sensitive information that needs to be protected. This creates a new risk and a possible inhibitor for applying process mining. Therefore, privacy issues in process mining become increasingly important. Several privacy preservation techniques have been introduced to mitigate possible attacks against static event data published only once. However, to keep the process mining results up-to-date, event data need to be published continuously. For example, a new log is created at the end of each week. In this paper, we elaborate on the attacks which can be launched against continuously publishing anonymized event data by comparing different releases, so-called correspondence attacks. Particularly, we focus on group-based privacy preservation techniques and show that provided privacy requirements can be degraded exploiting correspondence attacks. We apply the continuous event data publishing scenario to existing real-life event logs and report the anonymity indicators before and after launching the attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Aalst, W.M.P.: Responsible data science: using event data in a “people friendly’’ manner. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291, pp. 3–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62386-3_1
Elkoumy, G., Fahrenkrog-Petersen, S.A., Dumas, M., Laud, P., Pankova, A., Weidlich, M.: Secure multi-party computation for inter-organizational process mining. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 166–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49418-6_11
Elkoumy, G., et al.: Privacy and confidentiality in process mining - threats and research challenges. CoRR abs/2106.00388 (2021). https://arxiv.org/abs/2106.00388
Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: International Conference on Process Mining, ICPM 2019, Aachen, Germany (2019)
Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRIPEL: privacy-preserving event log publishing including contextual information. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 111–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_7
Fung, B.C.M., Wang, K., Fu, A.W., Pei, J.: Anonymity for continuous data publishing. In: 11th International Conference on Extending Database Technology. ACM International Conference Proceeding Series, vol. 261, pp. 264–275 (2008)
Fung, B.C., Wang, K., Fu, A.W.C., Philip, S.Y.: Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques. Chapman and Hall/CRC, London (2010)
Gehrke, J.: Models and methods for privacy-preserving data analysis and publishing. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE, p. 105. IEEE Computer Society (2006)
Mannhardt, F.: Sepsis Cases-Event Log. Eindhoven University of Technology (2016)
Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)
Michael, J., Koschmide, A., Mannhardt, F., Baracaldo, N., Rumpe, B.: User-centered and privacy-driven process mining system design for IoT. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019CAiSE 2019. LNBIP, vol. 350, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_17
Pika, A., Wynn, M.T., Budiono, S., ter Hofstede, A.H., van der Aalst, W.M.P., Reijers, H.A.: Privacy-preserving process mining in healthcare. Int. J. Environ. Res. Public Health 17(5), 1612 (2020)
Rafiei, M., van der Aalst, W.M.P.: Mining roles from event logs while preserving privacy. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 676–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_54
Rafiei, M., van der Aalst, W.M.P.: Privacy-preserving data publishing in process mining. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 122–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_8
Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_29
Rafiei, M., van der Aalst, W.M.P.: Group-based privacy preservation techniques for process mining. Data Knowl. Eng. 134, 101908 (2021). https://doi.org/10.1016/j.datak.2021.101908
Rafiei, M., Wagner, M., van der Aalst, W.M.P.: TLKC-privacy model for process mining. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 398–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50316-1_24
Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Supporting confidentiality in process mining using abstraction and encryption. In: Ceravolo, P., van Keulen, M., Gómez-López, M.T. (eds.) SIMPDA 2018-2019. LNBIP, vol. 379, pp. 101–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46633-6_6
von Voigt, S.N., et al.: Quantifying the re-identification risk of event logs for process mining - empiricial evaluation paper. In: Advanced Information Systems Engineering, CAiSE (2020)
Wong, R.C.W., Fu, A.W.C., Wang, K., Pei, J.: Minimality attack in privacy preserving data publishing. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 543–554 (2007)
Acknowledgment
Funded under the Excellence Strategy of the Federal Government and the Länder. We also thank the Alexander von Humboldt Stiftung for supporting our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rafiei, M., van der Aalst, W.M.P. (2021). Privacy-Preserving Continuous Event Data Publishing. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management Forum. BPM 2021. Lecture Notes in Business Information Processing, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-030-85440-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-85440-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85439-3
Online ISBN: 978-3-030-85440-9
eBook Packages: Computer ScienceComputer Science (R0)