Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy-Preserving Continuous Event Data Publishing

  • Conference paper
  • First Online:
Business Process Management Forum (BPM 2021)

Abstract

Process mining enables organizations to discover and analyze their actual processes using event data. Event data can be extracted from any information system supporting operational processes, e.g., SAP. Whereas the data inside such systems is protected using access control mechanisms, the extracted event data contain sensitive information that needs to be protected. This creates a new risk and a possible inhibitor for applying process mining. Therefore, privacy issues in process mining become increasingly important. Several privacy preservation techniques have been introduced to mitigate possible attacks against static event data published only once. However, to keep the process mining results up-to-date, event data need to be published continuously. For example, a new log is created at the end of each week. In this paper, we elaborate on the attacks which can be launched against continuously publishing anonymized event data by comparing different releases, so-called correspondence attacks. Particularly, we focus on group-based privacy preservation techniques and show that provided privacy requirements can be degraded exploiting correspondence attacks. We apply the continuous event data publishing scenario to existing real-life event logs and report the anonymity indicators before and after launching the attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://data.europa.eu/eli/reg/2016/679/oj.

  2. 2.

    https://github.com/m4jidRafiei/TLKC-Privacy-Ext.

  3. 3.

    https://github.com/m4jidRafiei/PP_CEDP.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. Aalst, W.M.P.: Responsible data science: using event data in a “people friendly’’ manner. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291, pp. 3–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62386-3_1

    Chapter  Google Scholar 

  3. Elkoumy, G., Fahrenkrog-Petersen, S.A., Dumas, M., Laud, P., Pankova, A., Weidlich, M.: Secure multi-party computation for inter-organizational process mining. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020. LNBIP, vol. 387, pp. 166–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49418-6_11

    Chapter  Google Scholar 

  4. Elkoumy, G., et al.: Privacy and confidentiality in process mining - threats and research challenges. CoRR abs/2106.00388 (2021). https://arxiv.org/abs/2106.00388

  5. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: International Conference on Process Mining, ICPM 2019, Aachen, Germany (2019)

    Google Scholar 

  6. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRIPEL: privacy-preserving event log publishing including contextual information. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 111–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_7

    Chapter  Google Scholar 

  7. Fung, B.C.M., Wang, K., Fu, A.W., Pei, J.: Anonymity for continuous data publishing. In: 11th International Conference on Extending Database Technology. ACM International Conference Proceeding Series, vol. 261, pp. 264–275 (2008)

    Google Scholar 

  8. Fung, B.C., Wang, K., Fu, A.W.C., Philip, S.Y.: Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques. Chapman and Hall/CRC, London (2010)

    Book  Google Scholar 

  9. Gehrke, J.: Models and methods for privacy-preserving data analysis and publishing. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE, p. 105. IEEE Computer Society (2006)

    Google Scholar 

  10. Mannhardt, F.: Sepsis Cases-Event Log. Eindhoven University of Technology (2016)

    Google Scholar 

  11. Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)

    Article  Google Scholar 

  12. Michael, J., Koschmide, A., Mannhardt, F., Baracaldo, N., Rumpe, B.: User-centered and privacy-driven process mining system design for IoT. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019CAiSE 2019. LNBIP, vol. 350, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_17

    Chapter  Google Scholar 

  13. Pika, A., Wynn, M.T., Budiono, S., ter Hofstede, A.H., van der Aalst, W.M.P., Reijers, H.A.: Privacy-preserving process mining in healthcare. Int. J. Environ. Res. Public Health 17(5), 1612 (2020)

    Article  Google Scholar 

  14. Rafiei, M., van der Aalst, W.M.P.: Mining roles from event logs while preserving privacy. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 676–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_54

    Chapter  Google Scholar 

  15. Rafiei, M., van der Aalst, W.M.P.: Privacy-preserving data publishing in process mining. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 122–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_8

    Chapter  Google Scholar 

  16. Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_29

    Chapter  Google Scholar 

  17. Rafiei, M., van der Aalst, W.M.P.: Group-based privacy preservation techniques for process mining. Data Knowl. Eng. 134, 101908 (2021). https://doi.org/10.1016/j.datak.2021.101908

    Article  Google Scholar 

  18. Rafiei, M., Wagner, M., van der Aalst, W.M.P.: TLKC-privacy model for process mining. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 398–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50316-1_24

    Chapter  Google Scholar 

  19. Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Supporting confidentiality in process mining using abstraction and encryption. In: Ceravolo, P., van Keulen, M., Gómez-López, M.T. (eds.) SIMPDA 2018-2019. LNBIP, vol. 379, pp. 101–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46633-6_6

    Chapter  Google Scholar 

  20. von Voigt, S.N., et al.: Quantifying the re-identification risk of event logs for process mining - empiricial evaluation paper. In: Advanced Information Systems Engineering, CAiSE (2020)

    Google Scholar 

  21. Wong, R.C.W., Fu, A.W.C., Wang, K., Pei, J.: Minimality attack in privacy preserving data publishing. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 543–554 (2007)

    Google Scholar 

Download references

Acknowledgment

Funded under the Excellence Strategy of the Federal Government and the Länder. We also thank the Alexander von Humboldt Stiftung for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Rafiei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rafiei, M., van der Aalst, W.M.P. (2021). Privacy-Preserving Continuous Event Data Publishing. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management Forum. BPM 2021. Lecture Notes in Business Information Processing, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-030-85440-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85440-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85439-3

  • Online ISBN: 978-3-030-85440-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics