Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Learning for the Detection of Frames of Interest in Fetal Heart Assessment from First Trimester Ultrasound

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Abstract

The current paper challenges convolutional neural networks to address the computationally undebated task of recognizing four key views in first trimester fetal heart scanning (the aorta, the arches, the atrioventricular flows and the crossing of the great vessels). This is the primary inspection of the heart of a future baby and an early recognition of possible problems is important for timely intervention. Frames depicting the views of interest were labeled by obstetricians and given to several deep learning architectures as a classification task against other irrelevant scan sights. A test accuracy of 95% with an F1-score ranging from 90.91% to 99.58% for the four key perspectives shows the potential in supporting heart scans even from such an early fetal age, when the heart is still quite underdeveloped .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benhammou, Y., Achchab, B., Herrera, F., Tabik, S.: Breakhis based breast cancer automatic diagnosis using deep learning: taxonomy, survey and insights. Neurocomputing 375, 9–24 (2019)

    Article  Google Scholar 

  2. Bridge, C.P., Ioannou, C., Noble, J.A.: Automated annotation and quantitative description of ultrasound videos of the fetal heart. Med. Image Anal. 36, 147–161 (2017)

    Article  Google Scholar 

  3. Cara, M., Tudorache, S., Dimieru, R., Florea, M., Patru, C., Iliescu, D.: Prenatal first trimester assessment of the heart. Ann. Cardiol. Cardiovasc. Med. 1(2), 1008 (2017)

    Google Scholar 

  4. Cui, S., et al.: Development and clinical application of deep learning model for lung nodules screening on CT images. Sci. Rep. 10, 1–10 (2020)

    Article  Google Scholar 

  5. Dozen, A., et al.: Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information. Biomolecules 10(11), 1526 (2020)

    Article  CAS  Google Scholar 

  6. Esteva, A., et al.: Deep learning-enabled medical computer vision. NPJ Digit. Med. 4, 5 (2021)

    Article  Google Scholar 

  7. Garcia-Canadilla, P., Sánchez Martínez, S., Crispi, F., Bijnens, B.: Machine learning in fetal cardiology: what to expect. Fetal Diagn. Ther. 47, 363–372 (2020)

    Article  Google Scholar 

  8. Huang, W., Bridge, C.P., Noble, J.A., Zisserman, A.: Temporal HeartNet: towards human-level automatic analysis of fetal cardiac screening video. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 341–349. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_39

    Chapter  Google Scholar 

  9. Hutchinson, D., et al.: First-trimester fetal echocardiography: identification of cardiac structures for screening from 6 to 13 weeks’ gestational age. J. Am. Soc. Echocardiogr. 30(8), 763–772 (2017)

    Article  Google Scholar 

  10. Iliescu, D., et al.: Improved detection rate of structural abnormalities in the first trimester using an extended examination protocol. Ultrasound Obstet. Gynecol. 42(3), 300–309 (2013)

    Article  CAS  Google Scholar 

  11. Jicinska, H., et al.: Does first-trimester screening modify the natural history of congenital heart disease? Circulation 135(11), 1045–1055 (2017)

    Article  Google Scholar 

  12. Komatsu, M., et al.: Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning. Appl. Sci. 11(1), 371 (2021)

    Article  CAS  Google Scholar 

  13. Letourneau, K., Horne, D., Soni, R., McDonald, K., Karlicki, F., Fransoo, R.: Advancing prenatal detection of congenital heart disease: a novel screening protocol improves early diagnosis of complex congenital heart disease. Obstet. Gynecol. Surv. 73, 557–559 (2018)

    Article  Google Scholar 

  14. Lichtblau, D., Stoean, C.: Cancer diagnosis through a tandem of classifiers for digitized histopathological slides. PLoS ONE 14(1), 1–20 (2019)

    Article  Google Scholar 

  15. Lindgren Belal, S., et al.: Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur. J. Radiol. 113, 89–95 (2019)

    Article  Google Scholar 

  16. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  17. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019). special Issue: Deep Learning in Medical Physics

    Google Scholar 

  18. Mittal, S., Stoean, C., Kajdacsy-Balla, A., Bhargava, R.: Digital assessment of stained breast tissue images for comprehensive tumor and microenvironment analysis. Front. Bioeng. Biotechnol. 7, 246 (2019)

    Article  Google Scholar 

  19. Patel, N., Narasimhan, E., Kennedy, A.: Fetal cardiac us: techniques and normal anatomy correlated with adult CT and MR imaging. RadioGraphics 37(4), 1290–1303 (2017)

    Article  Google Scholar 

  20. Piccialli, F., Somma, V.D., Giampaolo, F., Cuomo, S., Fortino, G.: A survey on deep learning in medicine: why, how and when? Inf. Fusion 66, 111–137 (2021)

    Article  Google Scholar 

  21. Pinto, N.M., Morris, S.A., Moon-Grady, A.J., Donofrio, M.T.: Prenatal cardiac care: goals, priorities & gaps in knowledge in fetal cardiovascular disease: perspectives of the fetal heart society. Prog. Pediatr. Cardiol. 59, 101312 (2020)

    Article  Google Scholar 

  22. Sherkatghanad, Z., et al.: Automated detection of autism spectrum disorder using a convolutional neural network. Front. Neurosci. 13, 1325 (2019)

    Article  Google Scholar 

  23. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1 - learning rate, batch size, momentum, and weight decay (2018)

    Google Scholar 

  24. Stoean, R.: Analysis on the potential of an EA-surrogate modelling tandem for deep learning parametrization: an example for cancer classification from medical images. Neural Comput. Appl. 32, 313–322 (2020)

    Article  Google Scholar 

  25. Stoean, R., et al.: Automated detection of presymptomatic conditions in spinocerebellar ataxia type 2 using monte-carlo dropout and deep neural network techniques with electrooculogram signals. Sensors 20(11), 3032 (2020)

    Article  Google Scholar 

  26. Stoean, R., Stoean, C., Atencia, M., Rodríguez-Labrada, R., Joya, G.: Ranking information extracted from uncertainty quantification of the prediction of a deep learning model on medical time series data. Mathematics 8(7), 1078 (2020)

    Article  Google Scholar 

  27. Tudorache, S., Cara, M., Iliescu, D.G., Novac, L., Cernea, N.: First trimester two- and four-dimensional cardiac scan: intra- and interobserver agreement, comparison between methods and benefits of color doppler technique. Ultrasound Obstet. Gynecol. 42(6), 659–668 (2013)

    Article  CAS  Google Scholar 

  28. Wang, J., et al.: Automated interpretation of congenital heart disease from multi-view echocardiograms. Med. Image Anal. 69, 101942 (2021)

    Article  Google Scholar 

  29. Yamanakkanavar, N., Choi, J.Y., Lee, B.: MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors 20(11), 3243 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, project number 408PED/2020, PN-III-P2-2.1-PED-2019-2227, Learning deep architectures for the Interpretation of Fetal Echocardiography (LIFE), within PNCDI III, as well as the Plan Propio de Investigación, Transferencia y Divulgación Científica of the Universidad de Málaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxandra Stoean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stoean, R. et al. (2021). Deep Learning for the Detection of Frames of Interest in Fetal Heart Assessment from First Trimester Ultrasound. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85030-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85029-6

  • Online ISBN: 978-3-030-85030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics