Nothing Special   »   [go: up one dir, main page]

Skip to main content

Collaborative Virtual Environments for Jaw Surgery Simulation

  • Conference paper
  • First Online:
Advances in Networked-Based Information Systems (NBiS 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 313))

Included in the following conference series:

Abstract

Jaw surgery is a challenging surgical technique to study, due to the small case numbers. Surgeons may never have real experience with the procedure. This causes delays in the critical procedures and may affect the patient’s speech development. Virtual reality (VR) is a great tool to simulate surgical operations. Previously, we introduced a virtual reality system for jaw surgery simulation. In this work, we performed an additional evaluation of our system to realize its limitation and improvable elements. Results show that its potential as a training tool is limited. Mainly due to the lack of collaborative interaction. Trainers outside of the VR environment can only communicate with VR users through verbal communication. However surgical techniques are impractical to teach via this method. To address this shortcoming, we surveyed works on collaborative features on virtual reality systems. Other proposed improvement features are advanced input devices and artificial intelligence. The improvements can lift the realism of the VR system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bissonnette, V., Mirchi, N., Ledwos, N., Alsidieri, G., Winkler-Schwartz, A., Del Maestro, R.F.: Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J. Bone Joint Surg. Am. 101(23), e127 (2019)

    Article  Google Scholar 

  2. Cecil, J., Kumar, M.B.R., Gupta, A., Pirela-Cruz, M., Chan-Tin, E., Yu, J.: Development of a virtual reality based simulation environment for orthopedic surgical training. In: Ciuciu, I. et al. (eds.) On the Move to Meaningful Internet Systems. LNCS, vol. 10034, pp. 206–214. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55961-2_21

  3. Ens, B., et al.: Revisiting collaboration through mixed reality: the evolution of groupware. Int. J. Hum. Comput. Stud. 131, 81–98 (2019)

    Article  Google Scholar 

  4. Fraser, M., et al.: Revealing the realities of collaborative virtual reality. In: Proceedings of the Third International Conference on Collaborative Virtual Environments, pp. 29–37 (2000)

    Google Scholar 

  5. Grandi, J.G., Debarba, H.G., Maciel, A.: Characterizing asymmetric collaborative interactions in virtual and augmented realities. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 127–135. IEEE (2019)

    Google Scholar 

  6. Huber, T., Paschold, M., Hansen, C., Wunderling, T., Lang, H., Kneist, W.: New dimensions in surgical training: immersive virtual reality laparoscopic simulation exhilarates surgical staff. Surg. Endosc. 31(11), 4472–4477 (2017)

    Article  Google Scholar 

  7. Huber, T., Wunderling, T., Paschold, M., Lang, H., Kneist, W., Hansen, C.: Highly immersive virtual reality laparoscopy simulation: development and future aspects. Int. J. Comput. Assist. Radiol. Surg. 13(2), 281–290 (2018)

    Article  Google Scholar 

  8. Iwanaga, J., Loukas, M., Dumont, A.S., Tubbs, R.S.: A review of anatomy education during and after the Covid-19 pandemic: revisiting traditional and modern methods to achieve future innovation. Clin. Anat. 34(1), 108–114 (2021)

    Article  Google Scholar 

  9. Khwanngern, K., et al.: Jaw surgery simulation in virtual reality for medical training. In: Barolli, L., Nishino, H., Enokido, T., Takizawa, M. (eds.) NBiS - 2019. AISC, vol. 1036, pp. 475–483. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29029-0_45

  10. Ladwig, P., Geiger, C.: A literature review on collaboration in mixed reality. In: Auer, M., Langmann, R. (eds.) REV 2018. LNNS, vol. 47, pp. 591–600. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95678-7_65

  11. Mirchi, N., Bissonnette, V., Yilmaz, R., Ledwos, N., Winkler-Schwartz, A., Del Maestro, R.F.: The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PloS One 15(2), e0229, 596 (2020)

    Google Scholar 

  12. Moro, C., Štromberga, Z., Stirling, A.: Virtualisation devices for student learning: comparison between desktop-based (Oculus Rift) and mobile-based (Gear VR) virtual reality in medical and health science education. Australas. J. Educ. Technol. 33(6), 1–10 (2017)

    Article  Google Scholar 

  13. Piumsomboon, T., Day, A., Ens, B., Lee, Y., Lee, G., Billinghurst, M.: Exploring enhancements for remote mixed reality collaboration. In: SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, pp. 1–5 (2017)

    Google Scholar 

  14. Piumsomboon, T., et al.: Mini-Me: an adaptive avatar for mixed reality remote collaboration. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2018)

    Google Scholar 

  15. Pulijala, Y., Ma, M., Pears, M., Peebles, D., Ayoub, A.: An innovative virtual reality training tool for orthognathic surgery. Int. J. Oral Maxillofac. Surg. 47(9), 1199–1205 (2018)

    Article  Google Scholar 

  16. Šašinka, Č, et al.: Collaborative immersive virtual environments for education in geography. ISPRS Int. J. Geo-Information 8(1), 3 (2019)

    Article  Google Scholar 

  17. Uppot, R.N., et al.: Implementing virtual and augmented reality tools for radiology education and training, communication, and clinical care. Radiology 291(3), 570–580 (2019)

    Article  Google Scholar 

  18. Winkler-Schwartz, A., et al.: Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J. Surg. Educ. 76(6), 1681–1690 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krit Khwanngern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khwanngern, K., Natwichai, J., Kaveeta, V., Meenert, P., Sriyong, S. (2022). Collaborative Virtual Environments for Jaw Surgery Simulation. In: Barolli, L., Chen, HC., Enokido, T. (eds) Advances in Networked-Based Information Systems. NBiS 2021. Lecture Notes in Networks and Systems, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-030-84913-9_16

Download citation

Publish with us

Policies and ethics