Abstract
This paper is concerned with a multiple-objective flexible job-shop scheduling problem with dual-resources constraints. Both time and cost-concerned objectives are taken into consideration and the corresponding mathematical model is presented. Based on Maximal fitness function, a hybrid discrete particle swarm algorithm is proposed to effectively solve the problem. The global and local search ability of the algorithm are both improved by modifying the position updating method and simulating annealing strategy with Maximal fitness function. Moreover, external archive is used to reserve better particles. Finally, the effectiveness of the proposed algorithm demonstrated by simulation examples and the results show that the obtained solutions are more uniformly distributed towards the Pareto solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 41(3), 157–183 (1993)
Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 32(1), 1–13 (2002)
Xiong, L., Qian, Q., Yunfa, F.: Review of application of genetic algorithms for solving flexible job shop scheduling problems. Comput. Eng. Appl. 55(23), 15–22 (2019)
Elmaraghy, H., Patelb, V., Abdallaha, I.B.: A genetic algorithm based approach for scheduling of dual-resource constrainded manufacturing systems. J. Manuf. Syst. 48(1), 369–372 (1999)
Deb, K.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2000)
Lei, D.M.: Multi-objective production scheduling: a survey. Int. J. Adv. Manuf. Technol. 43(9–10), 926–938 (2009)
Shafaei, R., Brunn, P.: Workshop scheduling using practical (inaccurate ) data Part1: the performance of heuristic scheduling rules in a dynamic job shop environment using a rolling time horizon approach. Int. J. Prod. Res. 37(17), 3913–3925 (1999)
Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)
Balling, R.: The maximin fitness function; multi-objective city and regional planning. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_1
Menchaca-Mendez, A., Coello, C.: Selection operators based on maximin fitness function for multi-objective evolutionary algorithms. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 215–229. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_19
Rajabinasab, A., Mansour, S.: Dynamic flexible job shop scheduling with alternative process plans: an agent-based approach. Int. J. Adv. Manuf. Technol. 54(9–12), 1091–1107 (2011)
Wang, L., Zhou, G., Xu, Y., Wang, S.Y., Liu, M.: An effective artificial bee colony algorithm for the flexible job-shop scheduling problem. Int. J. Adv. Manuf. Technol. 60(1–4), 303–315 (2012)
ElMaraghy, H., Patel, V., Abdallah, I.B.: Scheduling of manufacturing systems under dual-resource constraints using genetic algorithms. J. Manuf. Syst. 19(3), 186–201 (2000)
Li, J.Y., Sun, S.D., Huang, Y.: Adaptive hybrid ant colony optimization for solving dual resource constrained job shop scheduling problem. J. Softw. 6(4), 584–594 (2011)
Yuan, Y., Xu, H.: Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans. Autom. Sci. Eng. 12(1), 336–353 (2015)
Lei, D.M., Guo, X.P.: Variable neighbourhood search for dual-resource constrained flexible job shop scheduling. Int. J. Prod. Res. 52(9), 2519–2529 (2014)
Zheng, X.L., Wang, L.: A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem. Int. J. Prod. Res. 54(18), 1–13 (2016)
Li, J., Xie, S., Pan, Q., Wang, S.: A hybrid artificial bee colony algorithm for flexible job shop scheduling problems. Stud. Inform. Control 24(2), 171–180 (2015)
Khalife, M.A., Abbasi, B., Abadi, A.H.K.D.: A simulated annealing algorithm for multi objective flexible job shop scheduling with overlapping in operations. J. Optim. Ind. Eng. 8(8), 1–24 (2015)
Karthikeyan, S., Asokan, P., Nickolas, S.: A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems. Int. J. Bio-Inspired Comput. 7(6), 386–401 (2015)
Pan, Q.K.: Multi-objective scheduling optimization of job shop in intelligent manufacturing system, Ph.D. dissertation, Nanjing University of Aeronautics and Astronautics (2003)
Liu, X.X., Xie, L.Y., Tao, Z., Hao, C.Z.: Flexible job shop scheduling for decreasing production costs. J. Northeastern Univ. 29(4), 561–564 (2008)
Liu, X.X., Cai, G.Y., Xie, L.Y.: Research on bi-objective scheduling optimization for DRC job shop. Modular Mach. Tool Autom. Manuf. Tech. 2009(10), 107–112 (2009)
Li, J.Y., Sun, S.D., Huang, Y., Niu, G.G.: Double- objective inherited genetic algorithm for dual-resource constrained job shop. Control Decis. 26(12), 1761–1767 (2011)
Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)
Zhang, J., Wang, W., Xu, X.: A hybrid discrete particle swarm optimization for dual-resource constrained job shop scheduling with resource flexibility. J. Intell. Manuf. 28(8), 1961–1972 (2017). https://doi.org/10.1007/s10845-015-1082-0
Kirkpatrick, S.C.D., Gelatt, J., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Zhang, J., Jie, J., Wang, W., Xu, X.: A hybrid particle swarm optimization for multi-objective flexible job-shop scheduling problem with dual-resources constrained. Int. J. Comput. Sci. Math. 8(6), 526–532 (2017)
Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Evol. Comput. 8(2), 125–147 (1999)
Masoud, A., Amir, A.N.: Solving a multi-mode bi-objective resource investment problem using meta- heuristic algorithms. Adv. Comput. Tech. Electromagn. 2015(1), 41–58 (2015)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Acknowledgment
This research work was partly supported by Natural Science Foundation of Zhejiang Province (Grant No. LGF21G030001) and General Projects of Zhejiang Educational Committee (Grant No. Y201839027).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J., Jie, J. (2021). A Multi-objective Particle Swarm Optimization Algorithm Embedded with Maximum Fitness Function for Dual-Resources Constrained Flexible Job Shop Scheduling. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_59
Download citation
DOI: https://doi.org/10.1007/978-3-030-84522-3_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84521-6
Online ISBN: 978-3-030-84522-3
eBook Packages: Computer ScienceComputer Science (R0)