Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-class Tissue Classification in Colorectal Cancer with Handcrafted and Deep Features

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Abstract

Multi-class tissue classification from histological images is a complex challenge. The gold standard still relies on manual assessment by a trained pathologist, but it is a time-expensive task with issues about intra- and inter-operator variability. The rise of computational models in Digital Pathology has the potential to revolutionize the field. Historically, image classifiers relied on handcrafted feature extraction, combined with statistical classifiers, as Support Vector Machines (SVMs) or Artificial Neural Networks (ANNs). In recent years, there has been a tremendous growth in Deep Learning (DL), for all the image recognition tasks, including, of course, those concerning medical images. Thanks to DL, it is now possible to also learn the process of capturing the most relevant features from the image, easing the design of specialized classification algorithms and improving the performance. An important problem of DL is that it requires tons of training data, which is not easy to obtain in medical domain, since images have to be annotated by expert physicians. In this work, we extensively compared three classes of approaches for the multi-class tissue classification task: (1) extraction of handcrafted features with the adoption of a statistical classifier; (2) extraction of deep features using the transfer learning paradigm, then exploiting SVM or ANN classifiers; (3) fine-tuning of deep classifiers. After a cross-validation on a publicly available dataset, we validated our results on two independent test sets, obtaining an accuracy of 97% and of 77%, respectively. The second test set has been provided by the Pathology Department of IRCCS Istituto Tumori Giovanni Paolo II and has been made publicly available (http://doi.org/10.5281/zenodo.4785131).

N. Altini, T.M. Marvulli, M. Caputo, S. De Summa, F.A. Zito—Equally contributed to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel, R.L., et al.: Colorectal cancer statistics, 2020. CA. Cancer J. Clin. 70, 145–164 (2020). https://doi.org/10.3322/caac.21601

    Article  Google Scholar 

  2. Linder, N., et al.: Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn. Pathol. 7, 22 (2012). https://doi.org/10.1186/1746-1596-7-22

    Article  Google Scholar 

  3. Kather, J.N., et al.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep27988

    Article  Google Scholar 

  4. Kather, J.N., et al.: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16, 1–22 (2019). https://doi.org/10.1371/journal.pmed.1002730

    Article  Google Scholar 

  5. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition, 1–14 (2014)

    Google Scholar 

  6. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv Prepr. arXiv:1704.04861 (2017)

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE (2017). https://doi.org/10.1109/CVPR.2017.243

  8. Kassani, S.H., Kassani, P.H., Wesolowski, M.J., Schneider, K.A., Deters, R.: Classification of histopathological biopsy images using ensemble of deep learning networks. In: CASCON 2019 Proc. - Conf. Cent. Adv. Stud. Collab. Res. - Proc. 29th Annu. Int. Conf. Comput. Sci. Softw. Eng., pp. 92–99 (2020)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  10. Bychkov, D., et al.: Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 8, 1–11 (2018). https://doi.org/10.1038/s41598-018-21758-3

    Article  Google Scholar 

  11. Kather, J.N., et al.: Collection of textures in colorectal cancer histology (2016). https://doi.org/10.5281/zenodo.53169

  12. Kather, J.N., Halama, N., Marx, A.: 100,000 histological images of human colorectal cancer and healthy tissue (2018). https://doi.org/10.5281/zenodo.1214456

  13. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110 (2009). https://doi.org/10.1109/ISBI.2009.5193250

  14. Altini, N., et al.: Pathologist’s annotated image tiles for multi- class tissue classification in colorectal cancer (2021). https://doi.org/10.5281/zenodo.4785131

  15. Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02230-2_7

    Chapter  Google Scholar 

  16. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002). https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  17. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer vision using local binary patterns. Presented at the (2011). https://doi.org/10.1007/978-0-85729-748-8_14

  18. Haralick, R.M., Dinstein, I., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

  19. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8, 460–473 (1978). https://doi.org/10.1109/TSMC.1978.4309999

    Article  Google Scholar 

  20. Bianconi, F., Álvarez-Larrán, A., Fernández, A.: Discrimination between tumour epithelium and stroma via perception-based features. Neurocomputing 154, 119–126 (2015). https://doi.org/10.1016/j.neucom.2014.12.012

    Article  Google Scholar 

  21. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 58, 101544 (2019). doi:https://doi.org/10.1016/j.media.2019.101544

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  23. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE. 86, 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2012 AlexNet. Adv. Neural Inf. Process. Syst. (2012). https://doi.org/10.1016/j.protcy.2014.09.007

  25. Zeng, G., He, Y., Yu, Z., Yang, X., Yang, R., Zhang, L.: InceptionNet/GoogLeNet - going deeper with convolutions. CVPR 91, 2322–2330 (2016). https://doi.org/10.1002/jctb.4820

    Article  Google Scholar 

  26. He, K., Girshick, R., Dollár, P.: Rethinking ImageNet Pre-training, pp. 1–10 (2018)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1904–1916 (2015). https://doi.org/10.1109/TPAMI.2015.2389824

    Article  Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2016-Decem, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90.

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  30. Araujo, T., et al.: Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12, 1–14 (2017). https://doi.org/10.1371/journal.pone.0177544

    Article  Google Scholar 

  31. Altini, N., et al.: Semantic segmentation framework for glomeruli detection and classification in kidney histological sections. Electronics. 9, 503 (2020). https://doi.org/10.3390/electronics9030503

  32. Altini, N., et al.: A deep learning instance segmentation approach for global glomerulosclerosis assessment in donor kidney biopsies. Electronics 9, 1768 (2020). https://doi.org/10.3390/electronics9111768

    Article  Google Scholar 

  33. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  34. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019). https://doi.org/10.1038/s41591-019-0508-1.

  35. Schmauch, B., et al.: A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020). https://doi.org/10.1038/s41467-020-17678-4

    Article  Google Scholar 

  36. Fu, J., Singhrao, K., Cao, M., Yu, V., Santhanam, A.P., Yang, Y., Guo, M., Raldow, A.C., Ruan, D., Lewis, J.H.: Generation of abdominal synthetic CTs from 0.35T MR images using generative adversarial networks for MR-only liver radiotherapy. Biomed. Phys. Eng. Express. 6 (2020). https://doi.org/10.1088/2057-1976/ab6e1f.

  37. Levy-jurgenson, A.: Spatial Transcriptomics Inferred from Pathology Whole-Slide Images Links Tumor Heterogeneity to Survival in Breast and Lung Cancer. 1–16 (2020).

    Google Scholar 

  38. Cascianelli, S., et al.: Dimensionality reduction strategies for CNN-based classification of histopathological images. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 21–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_3

    Chapter  Google Scholar 

  39. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  40. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018). https://doi.org/10.1016/j.csbj.2018.01.001

    Article  Google Scholar 

  41. der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, (2008)

    Google Scholar 

  42. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  43. Deng, J., Li, K., Do, M., Su, H., Fei-Fei, L.: Construction and analysis of a large scale image ontology. Presented at the (2009)

    Google Scholar 

Download references

Acknowledgments

This research was funded by Italian Apulian Region “Tecnopolo per la medicina di precisione”, CUP B84I18000540002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Altini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Altini, N. et al. (2021). Multi-class Tissue Classification in Colorectal Cancer with Handcrafted and Deep Features. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84522-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics